

7th International Conference on Tethers in Space June 2-5, 2024, York University, Toronto, Canada

Velocity Observer Design of Space Tether System using Immersion and Invariance technique

Jihang Yang¹, Yonghe Xie¹, Gangqiang Li²

¹ School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, China
 ² École Centrale Nantes, CNRS, LHEEA, UMR 6598, F-44000 Nantes, France

System Dscription

Simulation Results

Conclusions and Future Work

The Research Background

Fig. 1 Image of TISS-1 (USA & Canada) Fig. 2 Image of STARS (Japan)

Fig. 3 Scheme of tethered spacecraft system

Fig 4. Scheme of space tether system.

Fig 5. YES2 contains FLOYD , MASS and Fotino, the spherical re-entry capsule.

Fig 6. YES2 on Foton.

Problem

Velocity filter overestimated the speed in the first minute after ejection, leading the controller to command additional braking, which lead to a decrease of velocity.

[1] Kruijff, M., Summary of Data Analysis of the YES2 Tethered SpaceMail Experiment, Delft University of Technology, 2008.
[2] I.V. Belokonov, M.V. Bondar, I.A. Kudryavtsev, Problems of Navigational Support of a Tether System Deployment by an Example of the YES2 Experiment Aboard Foton M3, 1 (2010).

the Kalman filter algorithm

- [3] T.S. Denney, M.E. Greene, On state estimation for an orbiting single tether system, IEEE Trans. Aerosp. Electron. Syst. 27 (1991) 689–695. https://doi.org/10.1109/7.85043.
- [4] P. Williams, Electrodynamic Tethers Under Forced-Current Variations Part II: Flexible-Tether Estimation and Control, J. Spacecr. Rockets 47 (2010) 320–333.
- [5] G. Li, Z.H. Zhu, Estimation of flexible space tether state based on end measurement by finite element Kalman filter state estimator, Adv. Space Res. 67 (2021) 3282–3293. https://doi.org/10.1016/j.asr.2021.01.057.
 [6] P. Tortora, L. Somenzi, L. Iess, R. Licata, Small Mission Design for Testing In-Orbit an Electrodynamic Tether Deorbiting System, J. Spacecr. Rockets 43 (2006) 883–892. https://doi.org/10.2514/1.15359.

Estimate the unmeasure states of the tether system

In [6], Tortora et al. designed an extended Kalman filter to estimate the in-plane and out-of-plane libration angles and **angular velocities** for Space Tether attitude control.

A significant computational source is required to process a set of sampling points (sigma points).

Methodology - Immersion and Invarance (I&I) Technique

- [7] Ø.N. Stamnes, O.M. Aamo, G.-O. Kaasa, A constructive speed observer design for general Euler-Lagrange systems, Automatica 47 (2011) 2233-2238. https://doi.org/10.1016/j.automatica.2011.08.006.
- [8] A. Astolfi, D. Karagiannis, R. Ortega, Nonlinear and Adaptive Control with Applications, Springer London, London, 2008. https://doi.org/10.1007/978-1-84800-066-7.
- [9] A. Astolfi, R. Ortega, A. Venkatraman, A Globally Exponentially Convergent Immersion and Invariance Speed Observer for N Degrees of Freedom Mechanical Systems, Proc. 48h IEEE Conf. Decis. Control CDC Held Jointly 2009 28th Chin. Control Conf. (2009) 6508–6513. https://doi.org/DOI: 10.1109/CDC.2009.5399984.

I&I adaptive Control Nonlinear Observer Design

- Electrical System
- Machanical System
- Electromechanical System

\Longrightarrow the in-plane pitch angle heta and out-of-plane roll angle ϕ

[10] H. Wen, Z.H. Zhu, D. Jin, H. Hu, Exponentially Convergent Velocity Observer for an Electrodynamic Tether in an Elliptical Orbit, J. Guid. Control Dyn. 39 (2016) 1113–1118. https://doi.org/10.2514/1.G001532.

Methodology - Immersion and Invarance (I&I) Technique

Fig. 5 Graphical illustration of the mapping between the trajectories of the system to be controlled and the target system.

[8] Astolfi, D. Karagiannis, R. Ortega, Nonlinear and Adaptive Control with Applications, Springer London, London, 2008. https://doi.org/10.1007/978-1-84800-066-7.

Conclusions and Future Work

System Description

The dynamic equations of the space tether system during the deployment

$$l'' - l \left[\left(\theta' + \Omega \right)^2 + \Omega^2 \left(3\cos^2 \theta - 1 \right) \right] = -\frac{\overline{T}}{m_0}$$

$$l^2 \theta'' + 2ll' \left(\Omega + \theta' \right) + \frac{3}{2} l^2 \Omega^2 \sin 2\theta = 0$$
(1)

Define the following nondimensional variables:

$$\lambda = l/l_n, \ \tilde{T} = \overline{T} / (m_0 l_n \Omega^2), \ \tau = \Omega t, \ \dot{s} = ds / dt$$
(2)

The nondimensional equations of tethered system (1) can be presented as following

$$\ddot{\lambda} - \lambda \left[\left(\dot{\theta} + 1 \right)^2 - 1 + 3\cos^2 \theta \right] = -\tilde{T}$$

$$\lambda^2 \ddot{\theta} + 2\lambda \dot{\lambda} \left(1 + \dot{\theta} \right) + 3\lambda^2 \sin \theta \cos \theta = 0$$
(3)

Fig. 6 Schematic diagram of STS

Furthermore, the system can be described in Euler-Lagrange by

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = u$$
(4)

where
$$q = \begin{bmatrix} \lambda & \theta \end{bmatrix}^{\top}, u = \begin{bmatrix} -\tau & 0 \end{bmatrix}^{\top} M(q) = M^{\top}(q) > 0$$

Then, a factorization of the generalized inertia matrix is used as

$$M(q) = T^{\top}(q)T(q), \ T(q) = \begin{bmatrix} 1 \\ \lambda \end{bmatrix}$$
(5)

And the change of coordinates $(\dot{q} \quad q)^{\mathsf{T}} \mapsto (x \quad y)^{\mathsf{T}}$

where $x = T(q)\dot{q}, y = q$

Define the mapping and as $L(q) = T^{-1}(q), F(q,u) = T^{-\top}(q)(u-G(q))$ (6)

Therefore, the system (3) allows to be converted to a state-space form

$$\dot{y} = L(y)x \tag{7}$$

$$\dot{x} = S(x, y)x + F(y, u)$$
(8)

Main Result

Proposition 1. An exponentially convergent speed observer is designed for the STS (2) as follows, and are the observer states.

$$\dot{\eta} = S_1(\eta + \beta, y) \cdot (\eta + \beta) + S_2 \cdot (\eta + \beta) + F(y, u) - \frac{\partial \beta}{\partial y} L(y) \cdot (\eta + \beta) - \frac{\partial \beta}{\partial y} \dot{y} - \frac{\partial \beta}{\partial x} \dot{x}$$

$$-r^2 \left[\frac{\partial \beta}{\partial y} L(y)\right]^{\mathsf{T}} e_x - r^2 L^{\mathsf{T}}(y) e_y$$
(12)

And the observer state $\hat{y}, \hat{x} \in \mathbb{R}^2$ obtained from the filter

$$\dot{\hat{y}} = L(y)(\eta + \beta) - \varphi_{l}e_{y}$$
(13)

$$\dot{\hat{x}} = S_1(\eta + \beta, y) \cdot (\eta + \beta) + S_2 \cdot (\eta + \beta) + F(y, u) - \varphi_2 e_x - r^2 \left[\frac{\partial \beta}{\partial y} L(y) \right] e_x - r^2 L^\top(y) e_y$$
(14)

where $\varphi_1 : \mathbb{R}^2 \times \mathbb{R}_+ \to \mathbb{R}_+$ and $\varphi_2 : \mathbb{R}^2 \times \mathbb{R}_+ \to \mathbb{R}_+$ are gain functions, the mapping $\beta \in \mathbb{R}^{2 \times 2 \times 2} \to \mathbb{R}^2$ is an intermediate variable, which is defined below, and e_x, e_y are the error of the system state.

System Description

Observer Design

Define a manifold for system

r

$$\pi \coloneqq \left\{ \left(y, x, \eta, \hat{y}, \hat{x} \right) \colon \eta + \beta \left(y, \hat{y}, \hat{x} \right) - x = 0 \right\} \subset \mathbb{R}^2$$
(15)

(17)

Then give the off-the-manifold coordinate

$$z = \frac{\eta - x + \beta(y, \hat{y}, \hat{x})}{r}$$

Differentiate the aforementioned equation, yields

$$\dot{z} = \frac{\left[\dot{\eta} - \dot{x} + \dot{\beta}\left(y, \hat{y}, \hat{x}\right)\right]r - \dot{r}\left[\eta - x + \beta\left(y, \hat{y}, \hat{x}\right)\right]}{r^{2}}$$
$$= \frac{\dot{\eta} - S_{1}\left(x, y\right)x - S_{2}x - F\left(y, u\right) + \nabla_{y}\beta \cdot L\left(y\right) \cdot x + \nabla_{y}\beta \dot{y} + \nabla_{x}\beta \dot{x}}{r}$$

(15)
(16)

$$f(16)$$

Observer Design

Assigning

$$\dot{\boldsymbol{\gamma}} = F(\boldsymbol{y}, \boldsymbol{u}) - \frac{\partial \beta}{\partial \boldsymbol{y}} L(\boldsymbol{y}) \cdot (\boldsymbol{\eta} + \boldsymbol{\beta}) - \frac{\partial \beta}{\partial \hat{\boldsymbol{y}}} \dot{\boldsymbol{y}} - \frac{\partial \beta}{\partial \hat{\boldsymbol{x}}} \dot{\boldsymbol{x}} + S_2 \cdot (\boldsymbol{\eta} + \boldsymbol{\beta}) + S_1(\boldsymbol{\eta} + \boldsymbol{\beta}, \boldsymbol{y}) \cdot (\boldsymbol{\eta} + \boldsymbol{\beta}) - r^2 \left[\frac{\partial \beta}{\partial \boldsymbol{y}} L(\boldsymbol{y}) \right]^{\mathsf{T}} \boldsymbol{e}_x - r^2 L^{\mathsf{T}}(\boldsymbol{y}) \boldsymbol{e}_y$$
(18)

Meanwhile, defining the errors of the states x and y

$$e_{y} = \hat{y} - y$$
(19)
$$e_{x} = \hat{x} - \eta - \beta$$
(20)

Replacing equation (18) in (17), and using the *lemma 1*, yields

$$\dot{z} = \frac{\dot{\eta} - S_1(x, y) \cdot x - S_2 \cdot x - F(y, u) + \nabla_y \beta L(y) \cdot x + \nabla_{\hat{y}} \beta \dot{\hat{y}} + \nabla_{\hat{x}} \beta \dot{\hat{x}}}{r} - \frac{\dot{r}}{r} z$$

$$= S_1(x, y) \cdot z + \overline{S_1} (\eta + \beta, y) \cdot z + S_2 \cdot z - \frac{\partial \beta}{\partial y} L(y) \cdot z - r \left[\frac{\partial \beta}{\partial y} L(y) \right]^{\mathsf{T}} e_x$$

$$-r L^{\mathsf{T}}(y) e_y - \frac{\dot{r}}{r} z$$
(21)

System Description

Differentiate equations (19) and (20), respectively,

$$\begin{array}{cccc}
 e_{y} = \hat{y} - y & (19) \\
 e_{x} = \hat{x} - \eta - \beta & (20)
\end{array}$$

$$\begin{array}{cccc}
 \dot{e}_{y} = \hat{y} - \dot{y} = L(y) \cdot (\eta + \beta) - \varphi_{1} e_{y} - L(y) x \\
 = L(y) \cdot (\eta + \beta) - L(y) \cdot (\eta + \beta - rz) - \varphi_{1} e_{y} \\
 = L(y) \cdot rz - \varphi_{1} e_{y}
\end{array}$$

$$\begin{array}{ccccc}
 \dot{y} = L(y)(\eta + \beta) - \varphi_{1} e_{y} \\
 x = \eta + \beta - rz
\end{array}$$

$$(22)$$

meanwhile, substituting $\dot{\hat{x}}$ (14) and $\dot{\eta}$ (18) in differential (20), yields

$$\dot{e}_{x} = \frac{\dot{x}}{\dot{x}} - \dot{\eta} - \dot{\beta} = \frac{\partial \beta}{\partial y} L(y) \cdot rz - \varphi_{2} e_{x}$$
(23)

The error system can be expressed in general Hamiltonian frame, with

 $H(z, e_{y}, e_{x}) = \frac{1}{2}z^{\top}z + \frac{1}{2}e_{y}^{\top}e_{y} + \frac{1}{2}e_{x}^{\top}e_{x}$

$$\begin{bmatrix} \dot{z} \\ \dot{e}_{y} \\ \dot{e}_{x} \end{bmatrix} = \begin{bmatrix} S_{1}(x,y) & -rL^{\mathsf{T}}(y) & -r(\nabla_{y}\beta L(y))^{\mathsf{T}} \\ L(y)r & 0 & 0 \\ \nabla_{y}\beta L(y)r & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{\partial H}{\partial z} \\ \frac{\partial H}{\partial e_{y}} \\ \frac{\partial H}{\partial e_{x}} \end{bmatrix} - \begin{bmatrix} -\overline{S_{1}}(\eta+\beta,y)-S_{2}+\nabla_{y}\beta L(y)+\frac{\dot{r}}{r} & 0 & 0 \\ 0 & \varphi_{1} & 0 \\ 0 & \varphi_{2} \end{bmatrix} \begin{bmatrix} \frac{\partial H}{\partial z} \\ \frac{\partial H}{\partial e_{y}} \\ \frac{\partial H}{\partial e_{x}} \end{bmatrix}$$
(24)

System Description				
Define the partial differential equation (PDE)				
	$\frac{\partial \beta}{\partial v} = \nabla_{y} \beta = \overline{S}_{1}(\hat{x}, \hat{y}) L^{\dagger}(\hat{y}) + k_{1} L^{\dagger}(\hat{y})$	(25)		
	$\beta = \overline{S}_1(\hat{x}, \hat{y}) L^{\dagger}(\hat{y}) \cdot y + k_1 L^{\dagger}(\hat{y}) \cdot y$	(26)		
let the error mapping	$\Delta = \Delta_x \left(y, \hat{x}, e_x \right) + \Delta_y \left(y, \hat{x}, e_y \right)$			
	$=\overline{S}_{1}(\eta+\beta,y)-\overline{S}_{1}(\hat{x},\hat{y})+\left[\overline{S}_{1}(\hat{x},\hat{y})+k_{1}I\right]\left[L^{\dagger}(y)-L^{\dagger}(\hat{y})\right]L(y)+S_{2}$	(27)		
which are satisfied with	$\Delta_x(y, \hat{x}, 0) = 0, \ \Delta_y(y, \hat{x}, 0) = 0$			
the Hamiltonian function (24) can be transformed into			

$$\begin{bmatrix} \dot{z} \\ \dot{e}_{y} \\ \dot{e}_{x} \end{bmatrix} = \begin{bmatrix} S_{1}(x,y) & -rL^{\mathsf{T}}(y) & -r\left(\nabla_{y}\beta L\left(y\right)\right)^{\mathsf{T}} \\ L(y)r & 0 & 0 \\ \nabla_{y}\beta L(y)r & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{\partial H}{\partial z} \\ \frac{\partial H}{\partial e_{y}} \\ \frac{\partial H}{\partial e_{x}} \end{bmatrix} - \begin{bmatrix} k_{1}I - \Delta + \frac{\dot{r}}{r} & 0 & 0 \\ 0 & \varphi_{1} & 0 \\ 0 & 0 & \varphi_{2} \end{bmatrix} \begin{bmatrix} \frac{\partial H}{\partial z} \\ \frac{\partial H}{\partial e_{y}} \\ \frac{\partial H}{\partial e_{x}} \end{bmatrix}$$

(28)

Stability

Proposition 2. Assume the scaling factor

 $\dot{r} = -\frac{k_1}{4}(r-1) + \frac{r}{2k_1} \|\Delta\|^2, \ r(0) \ge 1$

and notice the factor *r* satisfied $\{r \in \mathbb{R} | r \ge 1\}$ and $k_1 > 0$

Proof:

Step 1. (proof of stability of the general Hamiltonian function)

$$\dot{H}(z,e_y,e_x) = -z^{\top} \left(k_1 I - \Delta + \frac{\dot{r}}{r}\right) z - e_y^{\top} \varphi_1 e_y - e_x^{\top} \varphi_2 e_x$$

satisfies the property of $k_1 I - \Delta + \dot{r}/r \ge 0$

get
$$\dot{H}(z,e_y,e_x) \le 0$$
 (3)

when $\{z, e_y, e_x \in \mathbb{R}^n | \dot{H}(z, e_y, e_x) = 0\} = \{z, e_y, e_x | z = 0, e_y = 0, e_x = 0\}$

Stability

Select the positive-definite function $V_1 = \frac{1}{2} z^T z$

and its derivative is

$$\dot{V}_1 = -z^{\top} \left(k_1 I - \Delta + \frac{\dot{r}}{r} \right) z = -k_1 z^{\top} z + z^{\top} \Delta z - \frac{\dot{r}}{r} \left| z \right|^2$$
(32)

According the Young's inequality, yields

 $z^{\top} \Delta z \leq \frac{k_1}{2} |z|^2 + \frac{1}{2k_1} ||\Delta||^2 |z|^2$

Therefore

$$\dot{V}_{1} = -z^{\top} \left(k_{1}I - \Delta + \frac{\dot{r}}{r} \right) z = -k_{1}z^{\top}z + z^{\top}\Delta z - \frac{\dot{r}}{r} |z|^{2}$$

$$\leq -k_{1}|z|^{2} + \left(\frac{k_{1}}{2}|z|^{2} + \frac{1}{2k_{1}} ||\Delta||^{2} |z|^{2} \right) - \frac{\dot{r}}{r} |z|^{2} = -\frac{k_{1}}{2}|z|^{2} + \frac{1}{2k_{1}} ||\Delta||^{2} |z|^{2} - \frac{\dot{r}}{r} |z|^{2} \qquad (33)$$

$$\leq -\frac{k_{1}}{2}|z|^{2} + \frac{k_{1}(r-1)}{4r} |z|^{2} \qquad (r-1)/r \leq 1$$

$$\dot{H}(z, e_{y}, e_{x}) = -z^{\top} \left(k_{1}I - \Delta + \frac{\dot{r}}{r} \right) z - e_{y}^{\top} \varphi_{1} e_{y} - e_{x}^{\top} \varphi_{2} e_{x} = V_{1} - e_{y}^{\top} \varphi_{1} e_{y} - e_{x}^{\top} \varphi_{2} e_{x} \le 0$$

Step 2. (proof of stability of the extended system) Select the proper Lyapunov candidate function for the extended system such that

$$V(z,e_{y},e_{x},r) = H(z,e_{y},e_{x}) + V_{2} = \frac{1}{2}z^{T}z + \frac{1}{2}e_{y}^{T}e_{y} + \frac{1}{2}e_{x}^{T}e_{x} + \frac{1}{2}r^{2}$$

$$V_{2} = \frac{1}{2}r^{2}$$
(34)
Scaling factor
r

Then, the derivative of the function

$$\dot{V}(z,e_{y},e_{x},r) \leq -\frac{k_{1}}{4}|z|^{2} - e_{y}^{\top}\varphi e_{y} - e_{x}^{\top}\varphi e_{x} + rr^{i}$$

$$= -\frac{k_{1}}{4}|z|^{2} - e_{y}^{\top}\varphi e_{y} - e_{x}^{\top}\varphi e_{x} - \frac{k_{1}}{4}(r^{2} - r) + \frac{r^{2}}{2k_{1}}\|\Delta\|^{2}$$

$$\leq -\frac{k_{1}}{4}|z|^{2} - \varphi_{1}e_{y}^{2} - \varphi_{2}e_{p}^{2} - \frac{k_{1}}{4}(r^{2} - r) + \frac{r^{2}}{k_{1}}\|\Delta_{y}\|^{2} + \frac{r^{2}}{k_{1}}\|\Delta_{x}\|^{2}$$

$$\leq -k_{1}|z|^{2} - \overline{\varphi_{1}}e_{y}^{2} - \overline{\varphi_{2}}e_{x}^{2} - \frac{k_{1}}{4}(r^{2} - r)$$
Therefore
$$\dot{V}(z,e_{y},e_{x},r) \leq 0$$

$$r^{2} - r \geq 0, r(0) \geq 1$$

$$V(z,e_{y},e_{x},r) \leq 0$$

$$r^{2} - r \geq 0, r(0) \geq 1$$

Stability

System Description

Stabilisation via I&I is related to passivity-based stabilisation methods, with suitable storage function.

The Research Background

System Dscription

Conclusions and Future Work

Proposition 1.

$$\dot{\eta} = S_1(\eta + \beta, y) \cdot (\eta + \beta) + S_2 \cdot (\eta + \beta) + F(y, u) - \frac{\partial \beta}{\partial y} L(y) \cdot (\eta + \beta)$$
$$- \frac{\partial \beta}{\partial \hat{y}} \dot{\hat{y}} - \frac{\partial \beta}{\partial \hat{x}} \dot{\hat{x}} - r^2 \left[\frac{\partial \beta}{\partial y} L(y) \right]^{\mathsf{T}} e_x - r^2 L^{\mathsf{T}}(y) e_y$$
$$\dot{\hat{z}} = L(y) (y + \beta)$$

 $\hat{y} = L(y)(\eta + \beta) - \varphi_1 e_y$

$$\dot{\hat{x}} = S_1(\eta + \beta, y) \cdot (\eta + \beta) + S_2 \cdot (\eta + \beta) + F(y, u) - \varphi_2 e_x - r^2 \left[\frac{\partial \beta}{\partial y}L(y)\right]^{\mathsf{T}} e_x - r^2 L^{\mathsf{T}}(y) e_y$$

Input	Simulation parameters a	Simulation parameters and initial conditions		
$u = \begin{bmatrix} -\tau & 0 \end{bmatrix}^{T}$ $= \begin{bmatrix} -3y_1 \cos^2 y_2 & 0 \end{bmatrix}^{T}$	$k_{1} = 5, k_{1} = 10$ $y_{1}(0) = 0.01, y_{2}(0) = 0$ $\hat{q}_{1}(0) = 0.05, \hat{q}_{2}(0) = 0$ $\eta_{1}(0) = 0.74, \eta_{2}(0) = 0$	$\overline{\varphi}_{1} = \overline{\varphi}_{2} = 0.175$ $x_{1}(0) = 0.5, x_{2}(0) = 0$ $\hat{x}_{1}(0) = 0.75, \hat{x}_{2}(0) = 0$ $r(0) = 1.5$		

Fig. 7 Dimensionless time histories of comparison between **real velocities** $(\dot{\lambda}, \dot{\theta})$ and **estimated velocities** $(\dot{\hat{\lambda}}, \dot{\hat{\theta}})$

Fig. 2 Dimensionless time histories of the error between the real velocities and the estimated velocities

Fig.8 Dimensionless time histories of the comparison $(2 - 0)^{T}$

between
$$y = q = (\lambda \quad \theta)$$

and $\hat{y} = \hat{q} = (\hat{\lambda} \quad \hat{\theta})^{\top}$.

The Research Background

System Dscription

Simulation Results

Conclusions and Future Work

A nonlinear velocity observer to estimate the in-plane deployment velocities of the space tether system has been presented in this paper.

A crucial PDE

The stability analysis of the proposed velocity observer can be demonstrated based on the Hamiltonian principle

Future Work

Add perturbation to the the measured signals.

Thank you for listening !