Incentivizing LEO Debris Removal with Electrodynamic Tethers

Ritu Bhalodia, Jesse K. McTernan, and <u>Sven G. Bilén</u> The Pennsylvania State University

7th International Conference on Tethers in Space

June 2–5, 2024, Toronto, ON, Canada

Paper No: 2024081

Houston, we have a problem...

1981

https://orbitaldebris.jsc.nasa.gov/modeling/legend.html

Ways to mitigate orbital debris

- Proactive
 - Mandate de-orbit at end-of-life (e.g., 5- or 25-year directive) for new systems
- Active
 - Active Debris Removal (ADR) systems
- Removing some of the largest debris could have a big effect on mitigating Kessler Syndrome

HistoricSpacecraft.com

Statistically Most Concerning (SMC) debris in LEO

- Started with list of top 50 SMC objects
 - These were selected using 11 different methods from list of non-operational LEO objects available on Space-track.org [1]
- Important to note:
 - 84% of objects come from CIS (Russia/Soviet)
 - 8% from Japan
 - 6% from ESA
 - 2% from China

[1] McKnight, D. et al. (2021) "Identifying the 50 statisticallymost-concerning derelict objects in LEO," *Acta Astronautica*, 181, pp. 282–291. doi:10.1016/j.actaastro.2021.01.021.

SATNAME	APOGEE, km	PERIGEE, km	INCL., deg	MASS, kg	COUNTRY	LAUNCH
SL-16 R/B	848	837	71.0	9000	CIS	3/26/1993
SL-16 R/B	848	827	71.0	9000	CIS	11/17/1992
SL-16 R/B	846	843	71.0	9000	CIS	6/29/2007
SL-16 R/B	854	827	71.0	9000	CIS	March 2, 2000
SL-16 R/B	844	833	71.0	9000	CIS	10/22/1985
SL-16 R/B	853	834	71.0	9000	CIS	5/22/1990
SL-16 R/B	1006	986	99.5	9000	CIS	October 12, 2001
SL-16 R/B	852	831	71.0	9000	CIS	10/31/1995
SL-16 R/B	844	835	71.0	9000	CIS	7/28/1998
SL-16 R/B	845	838	71.0	9000	CIS	11/24/1994
SL-16 R/B	846	823	71.0	9000	CIS	5/13/1987
SL-16 R/B	845	841	71.0	9000	CIS	4/23/1994
SL-16 R/B	844	840	71.0	9000	CIS	12/25/1992
SL-16 R/B	850	823	71.0	9000	CIS	9/16/1993
SL-16 R/B	848	831	71	9000	CIS	11/23/1988
SL-16 R/B	863	839	70.8	9000	CIS	April 9, 1996
SL-16 R/B	848	842	71.0	9000	CIS	October 6, 2004
SL-16 R/B	841	831	71.0	9000	CIS	3/18/1987
SL-16 R/B	842	814	71.0	9000	CIS	5/15/1988
SL-16 R/B	813	801	98.6	9000	CIS	October 7, 1998
ENVISAT	766	764	98.1	7800	ESA	January 3, 2002
METEOR 3 M	1013	994	99.6	2500	CIS	October 12, 2001
ADEOS	794	793	98.9	3560	JPN	8/17/1996
H-2A R/B	836	734	98.2	3000	JPN	12/14/2002
SL-12 R/B(2)	847	838	71.0	2440	CIS	9/28/1984
CZ-2D R/B	846	791	98.7	4000	PRC	11/20/2011
SL-8 R/B	995	966	82.9	1435	CIS	3/15/1978
H-2 R/B	1306	860	98.7	2700	JPN	8/17/1996
COSMOS 2322	854	842	71.0	3250	CIS	10/31/1995
SL-8 R/B	992	961	82.9	1435	CIS	May 2, 1991
COSMOS 2406	863	844	71.0	3250	CIS	October 6, 2004
COSMOS 2278	852	841	71.1	3250	CIS	4/23/1994
COSMOS 1943	851	833	71.0	3250	CIS	5/15/1988
ADEOS 2	801	800	98.5	3680	JPN	12/14/2002
SL-16 R/B	045	622	98.2	9000	CIS	7/17/1999
SL-12 R/B(2)	848	794	71.1	2440	CIS	5/30/1985
SL-8 R/B	989	957	83.0	1435	CIS	2/28/19/8
COSMOS 1844	866	824	71.0	3250	CIS	5/13/1987
ARIANE 5 R/B	796	748	98.6	2575	FR	January 3, 2002
SL-S R/B	981	955	82.9	1435	CIS	12/20/19/4
SL-8 R/B	992	950	82.9	1435	CIS	7/14/1994
SL-8 R/B	1001	970	82.9	1435	CIS	August 7, 1977
SL-S K/B	990	954	82.9	1435	CIS	3/24/1983
SL-3 K/B	890	791	81.3	1100	CIS	12/14/1982
SL-S K/B	999	909	82.9	1435	CIS	November 1, 1984
COSMOS 2082	830	833	71.0	3250	CIS	5/22/1990 October 12, 1000
oL-6 K/B	990	903	02.9	1435	CIG	October 12, 1980
oL-6 K/B	900	900	63.0	1432	CIG	//21/19/0
COSMOS 12/5	1014	904	83.0	1425	CIS	April 0, 1981
OL-O R/B	990	900	02.9	1433	010	11/20/1900

PennState

HistoricSpacecraft.com

HistoricSpacecraft.com

Objects in orbit have "embodied" energy due to their kinetic and potential energy

altitude potential energy velocity kinetic energy Image of Earth from NASA

1

PennState

The orbital energy can be expressed in terms of the orbiting body's mass and semimajor axis (for elliptical orbits)

a = semimajor axis of orbit $\mu = G(m_1 + m_2)$, standard gravitational parameter m = mass of orbiting body

"Orbital battery" capacity is ~1.08 Wh/(km·kg)

"Orbital battery" capacity is ~1.08 Wh/(km·kg)

An electrodynamic tether can convert orbital energy to electrical energy

electrons from the surrounding plasma

Power generation with EDTs was demonstrated on TSS-1R

Energy Harvesting

• Total energy defined in ECI (Earth-centered Inertial) frame of spacecraft system:

 $E_{\text{tot}} = E_{\text{orb}} + E_{\text{elec}} + E_{\text{earth}} + E_{\text{drag}}$

• Change in total energy for each timestep:

$$\Delta E_{\rm orb} = \Delta E_{\rm elec} + \Delta E_{\rm earth} + \Delta E_{\rm drag}$$

• A spacecraft equipped with an EDT can rendezvous with space debris to strategically repurpose the debris' embodied orbital energy into electrical energy while deorbiting it

Energy Harvesting (cont.)

• Total electrical power:

$$P_{\text{elec}} = P_{\text{anode}} + P_{\text{cathode}} + P_{\text{storage}} + P_{\text{load}} + P_{\text{tether}}$$

$$P_{\text{elec}} = P_{EMF \times I} = \varepsilon I$$

• Through conservation of energy, a relation between orbital and electrical energy can be given by: $\Delta E_{\text{orbital}} = E_{\text{electrical}} = \varepsilon I \Delta t$

$$\frac{\mu m}{2} \left(\frac{1}{a_2} - \frac{1}{a_1} \right) = \varepsilon I \Delta t$$

Using an EDT system to remove debris could reduce costs of high-power systems missions

Traditional EPS can make up 20% of the spacecraft cost

An important factor of EPS design is high specific power, produced by low mass, HE arrays

Many of these missions require < 5 kW of power and could be replaced by EDTs

Images from Fox, B., Brancato, K., and Alkire, B., "Guidelines and Metrics for Assessing Space System Cost Estimates", RAND Corp., TR-418-AF, Santa Monica, Calif., 2008

EPS (19%)

IA&T

(18%)

N

EDTs could provide economic value to a deorbit mission

The power generated by Orbital debris has a deorbiting debris could value worth millions save millions per mission* [2] incentive

Therefore, EDT systems could incentivize the **dual purpose** of debris mitigation and supplying high power

39 SMC objects put into 4 groups based their similarity for use in simulations

TeMPEST is a powerful tool for analysis of EDT systems

- Ability to perform analyses at different scale size
 - Global scale
 - At fixed location during the course of a mission as function of any parameter (e.g., altitude)
- Capable of handling time scales from sub-second to years (in orbital mode)

Collaborator Brian Gilchrist University of Michigan We use TeMPEST to perform EDT system trades and simulations

- TeMPEST Tethered Mission Planning and Evaluation Software Tool computation capabilities
 - Orbital position/velocity
 - Local magnetic field strength (IGRF)
 - Local ionospheric and atmospheric conditions (IRI, MSIS)
 - Motional induced emf
 - Drag/thrust forces produced by the tether current
- TEMPEST was extended at Penn State to model energy harvesting and storage

Define EDT System Composition

- Small sats system (representing a satellite under 180 kg)
- Total mass = 200 kg
- Tether mode = passive (deorbiting)
- Apogee, perigee, inclination = as described in orbital parameters of debris
- RAAN = 0.0 deg
- True Anomaly = 0.0 deg
- Tether length = 1–4 km
- Tether diameter = 15 AWG, 25 AWG, 30 AWG
- Tether material = Aluminum

Altitude vs. MET (Mission Elapsed Time)

Total Energy vs MET

- **Top:** Total energy vs MET for constant tether length (1 km) different tether diameter
- Bottom: Total energy vs Met for constant tether diameter (15 AWG) different tether length
- Increased tether diameter results in higher current flow, leading to greater energy harvesting
- As the length of the tether increases, the generation of energy (electrical power) increases rapidly

Power vs MET

Approximate energy per object that could be harvested assuming 1.08 Wh/(kg km) orbital energy density and assuming a final altitude 300 km

Group	Objects in group	Average apogee (km)	Eccentricity	Inclination	Mass (kg)	Energy available (kWh) ¹
1	18	848	0.00105	70.99	9000	5251
2	6	857	0.00144	71.00	3250	1919
3	11	993	0.00229	82.92	1435	1048
4	4	934	0.00949	98.58	3235	1976

HistoricSpacecraft.com

HistoricSpacecraft.com