

Università degli Studi di Padova

The Deployment Mechanism of the E.T.PACK Deorbit System functional and qualification tests

A. Brunello, G. Polato, A. Valmorbida, G. Colombatti, S. Chiodini, G. Anese, E.C. Lorenzini

TiS Conference 2-5th June, 2024 York University, Toronto (Canada)

Contents

1. Introduction

1.1 The E.T.PACK Project

2. The Deployment Mechanism Module

- 2.1 The tape spool
 - 2.1.1 Cold Welding Test
 - 2.1.2 Shaker Test
- 2.2 The Deployment Mechanism

3. Deployment Tests

- 3.1 Constant Velocity Deployment Tests
- 3.2 Specific Deployment Profile Test

4. Future Developments

5. Final Remarks

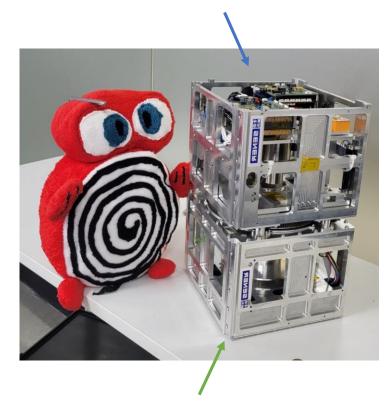
1. Introduction

- Contemporary research efforts are experiencing a significant paradigm shift for moving in space, primarily motivated by:
 - ✓ Space Environmental Pollution
 - ✓ Space Debris Problem

Propellant-less propulsion

 Electrodynamic Tethers can provide adequate propulsion for space debris removal without the complications of combustions and with a minimal impact on the space environment.

1.1 The E.T.PACK Project


DEPLOYER MECHANISM MODULE (DMM)

E.T.PACK Project aim

- ✓ Design, manufacturing, and test an autonomous Deorbit Kit Prototype for end-of-life satellite deorbiting ^{1,2}
- ✓ Funded by the European Innovation Council

• The Deorbit Kit Prototype

✓ is a 12U CubeSat with a total mass of 24 kg

ELECTRON EMITTER MODULE (EEM)

¹ Sánchez-Arriaga, G., Naghdi, S., Wätzig, K., Schilm, J., Lorenzini, E. C., Tajmar, M., Post, A. (2020). The E.T.PACK project: towards a fully passive and consumable-less deorbit kit based on low-work-function tether technology. Acta Astronautica, 177, 821-827.

L. Tarabini Castellani, S. García González, A. Ortega, S. Madrid, E.C. Lorenzini, L. Olivieri, G. Sarego, A. Brunello, A. Valmorbida, M. Tajmar, C. Drobny, J-P. Wulfkuehler, R. Nerger, K. Wätzig, S. Shahsvani, G. Sánchez-Arriaga, Deorbit kit demonstration mission, Journal of Space Safety Engineering, Volume 9, Issue 2, 2022, Pages 165-173, ISSN 2468-8967, https://doi.org/10.1016/j.jsse.2022.01.004.

1.1 The E.T.PACK Project

• The Bare Electrodynamic Tether ³

- ✓ The total tape length is ~500 m.
- \checkmark The bare portion of the E.T.PACK bare electrodynamic tether consists in a conductive aluminum tape of 2.5 cm of width and 40 μm of thickness.
- For the much shorter inert portion of the tether, the material chosen is PEEK with 50 μ m of thickness.

Inert Segment (PEEK) Bare Segment (ALUMINIUM) EEM S/C

³ Sanmartin, Juan & Martinez-Sanchez, Manuel & Ahedo, Eduardo. (1993). Bare wire anodes for electrodynamic tethers. Journal of Propulsion and Power - J PROPUL POWER. 9. 353-360. 10.2514/3.23629.

2. The Deployment Mechanism Module

The Deployment Mechanism Module (DMM)

- ✓ is compact, with a total volume of 5.2lt and a mass of 12.5
 Kg
- the external surface is equipped with solar panels serving the dual purpose of recharging the batteries and providing power to the avionics system 4
- ✓ includes:
 - 1. The Deployment Mechanism (DM)
 - 2. The Tape Spool
 - 3. The Docking Mechanism
 - 4. A Cold Gas System
 - 5. Electrical and Electronics

Internal part

(proprietary)

⁽DM)

C.C. Lorenzini, L. Olivieri, G. Sarego, A. Brunello, A. lätzig, S. Shahsvani, G. Sánchez-Arriaga, Deorbit kit e. 9, Issue 2, 2022, Pages 165-173, ISSN 2468-8967,

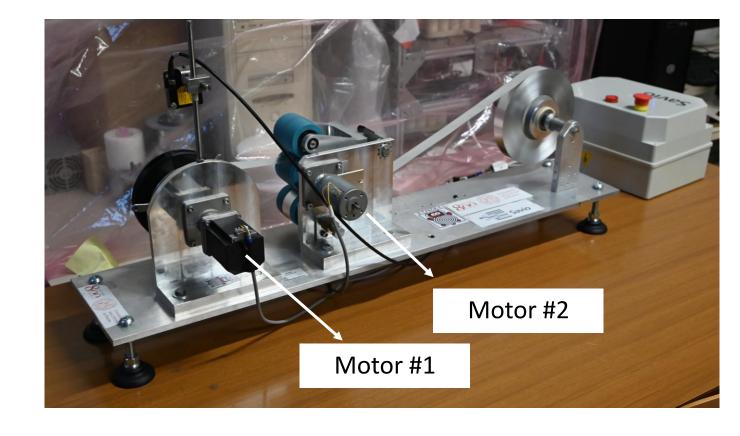
⁴ L. Tarabini Castellani, S. García González, A. Ortega, S. Madrid, E.C. Lorenzini, L. Olivieri, G. Sarego, A. Brunello, A. Valmorbida, M. Tajmar, C. Drobny, J-P. Wulfkuehler, R. Nerger, K. Wätzig, S. Shahsvani, G. Sánchez-Arriaga, Deorbit kit demonstration mission, Journal of Space Safety Engineering, Volume 9, Issue 2, 2022, Pages 165-173, ISSN 2468-8967, https://doi.org/10.1016/j.jsse.2022.01.004.

2.1 The tape Spool

The Spool design

- ✓ Investigation of spool type and dimensions according to the volume available in the DMM
- ✓ A trade off analysis led to the selection of a stationary spool and parallel spooling ⁵

Fixed Canister Stationary Spool


⁵ Sarego, G., Olivieri, L., Valmorbida, A. et al. Deployment requirements for deorbiting electrodynamic tether technology. CEAS Space J 13, 567–581 (2021). https://doi.org/10.1007/s12567-021-00349-5

2.1 The tape Spool

The Spooling Machine

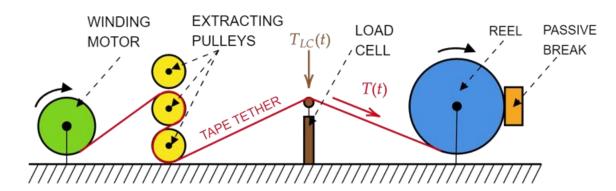
- ✓ create the spool
- ✓ is accurate in maintaining the tape tension and in keeping the coils aligned
- ✓ computes accurately (within 1%) the spooled tape length using the encoder of the stepper motor and the coil diameter measured by the laser sensor

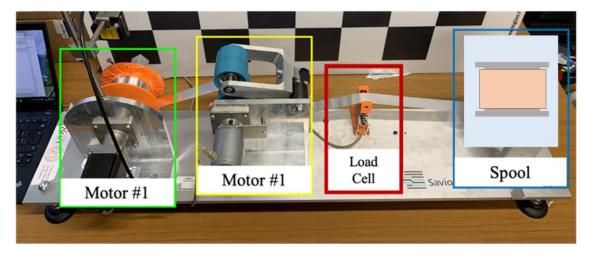
Aim of Test Campaign

✓ verification of cold welding formation throught tension measurements

Testing procedures

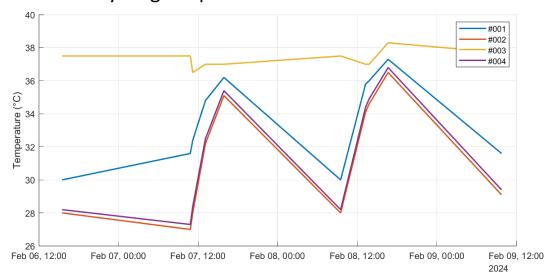
- 1. Tape tether tension measurement
- 2. Thermal Vacuum (TV) / Thermal Balance (TB) test
- 3. Tape tether tension measurement after TV/TB



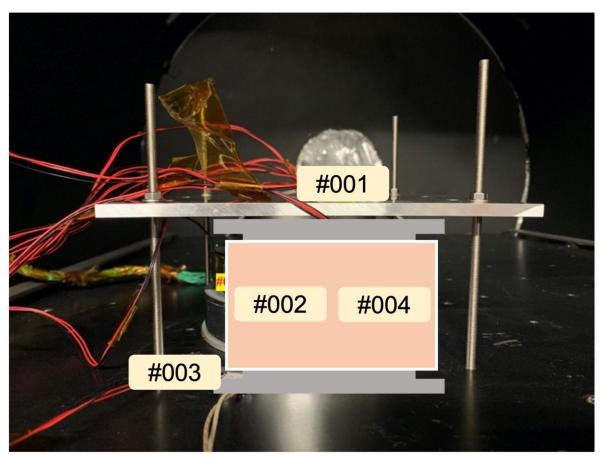

Thermal Vacuum Chamber at UniPD

1. Tape tether tension measurements

- ✓ The tape spool was monuted on a free-rotating reel
- ✓ A passive brake system was introduced for maintaining a minimum tension
- ✓ Tape tension was monitored with a Burster load cell

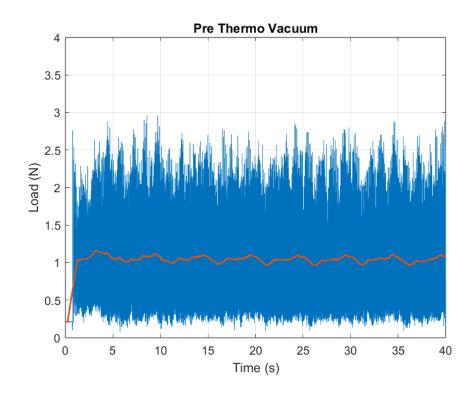


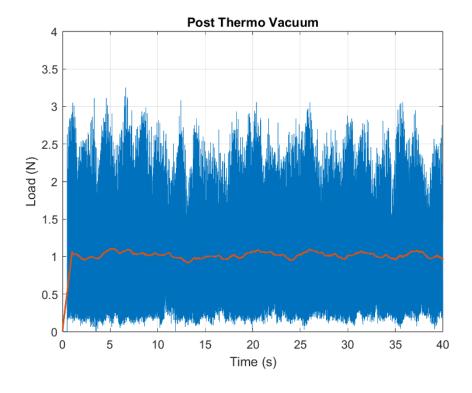
Scheme of the tape tension measurement test



2. Thermal Vacuum (TV) / Thermal Balance (TB) Test

- Installation of the spool into the UniPD TV chamber
- Thermal cycling of spool:


- Real-time temperature monitoring with 4-wire PT100 sensors
- Employing single control loop for temperature regulation



TV/TB test into the TV Chamber

3. Comparison of Tape Tether Tension / Status between pre and post TV/TB tests

- Observation of stable average tension
- Absence of cold-welding

2.1.2 Shaker Tests

Aim of test campaign

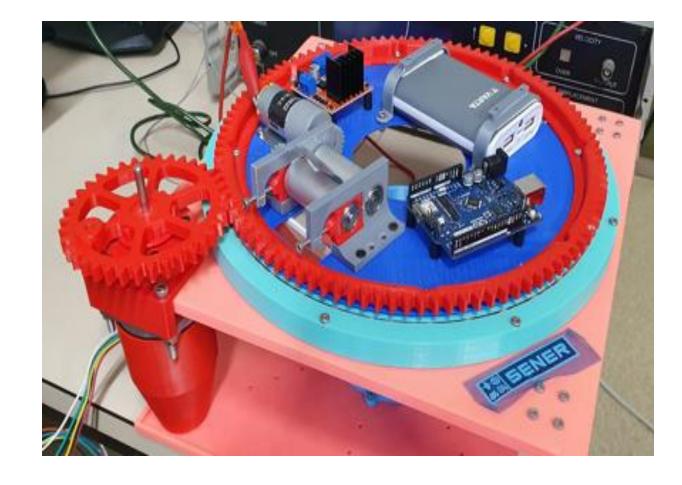
- ✓ perform pre and post vibration searches to detect anomalies of fundamental modes of the spool
- ✓ Validate the resistance of the spool to launch loads

Testing procedures

- 1. Sine Sweep (Search)
- 2. Sine High Levels (amplitude 0.1g)
- 3. Random Vibrations (PSD of Canisterized Payloads)
- 4. Sine Sweep (Search)

Results

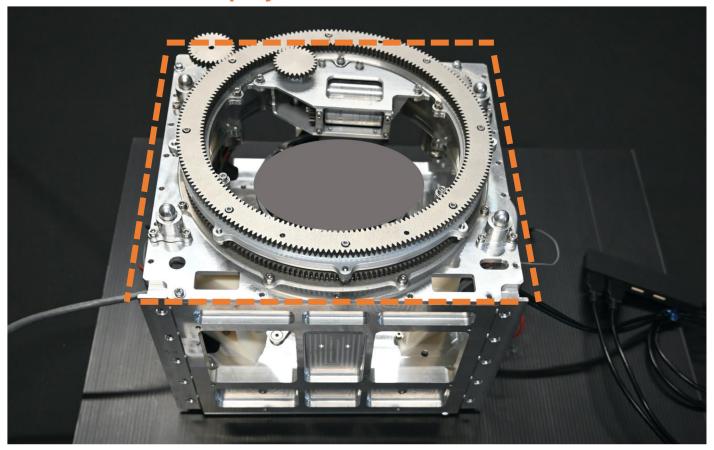
- ✓ no marked changes in resonant frequencies
- ✓ no significant changes observed in the tether spool or canister after vibration tests


Shaker at UniPD

2.2 The Deployment Mechanism

Plastic Breadborad Prototype

- ✓ representative model in terms of dimensions and volume of the DM
- ✓ the plastic breadboard prototype was useful in conducting preliminary tests related to tape extraction
- ✓ definition of DM components and extraction methodology



2.2 The Deployment Mechanism

Deployment Mechanism

- The DM engineering Model
 - Fixed to the top part of the DMM

3. Deployment tests

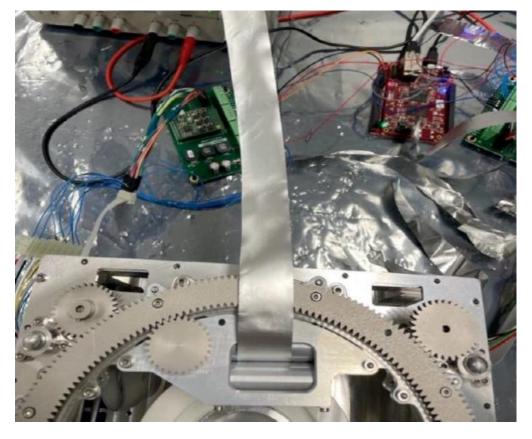
Aim of test campaign

- Check the DM capability to deploy smoothly different sections of tape made of different materials
- ✓ Evaluate the status of the tape after extraction

Test Procedure

- 1. Constant Deployment Velocities
- 2. Specific Deployment Profile

Deployment test setup


3.1 Constant Velocity Tests

Methodology

- ✓ Tapes were tested at speeds corresponding to:
 - 1. Maximum (550 RPM),
 - 2. Prevalent (80 RPM),
 - 3. Minimum (30 RPM)

Results

- ✓ Aluminum and PEEK tape inspection after several meters of extraction revealed no damage
- ✓ the design of DM was validated

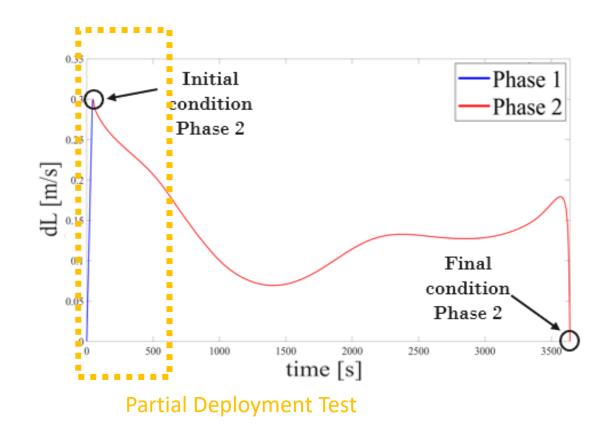
Status of the Aluminium tape

3.1 Constant Velocity Tests

Transition between tapes

- ✓ Different thicknesses and different mechanical properties
- ✓ Test conducted at a constant velocity

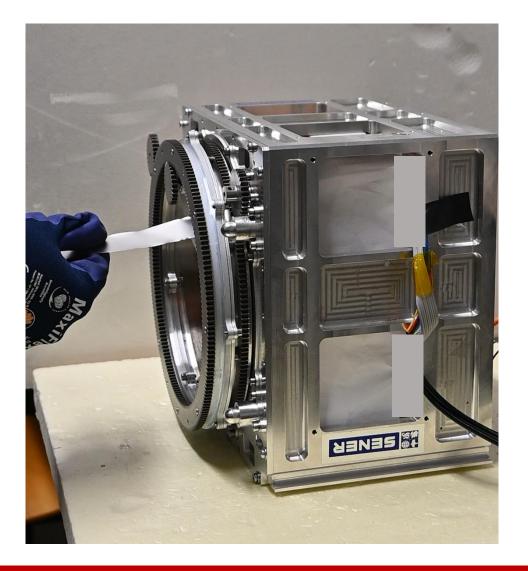
3.2. Partial Deployment Profile tests


The Deployment Profile

Phase 1

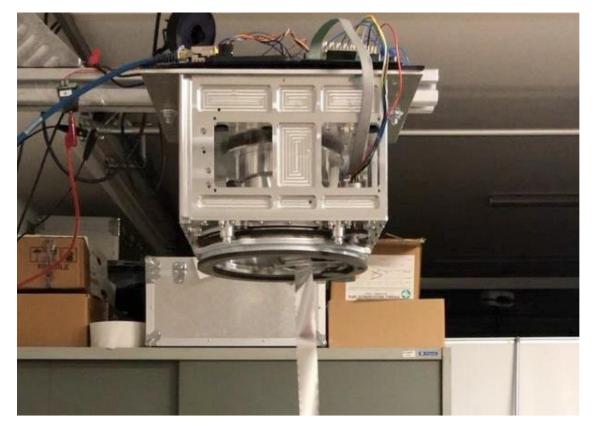
- ✓ separation phase between the two modules
- ✓ boundary conditions: the maximum tether velocity and a span time of 50 s

Phase 2


- ✓ Optimization using BOCOP software
- ✓ boundary conditions: initial and final state, total deployment time
- \checkmark Conversion of length rate profile (dl/dt) to angular velocity with the Archimedean spiral model

3.2. Partial Deployment Profile tests

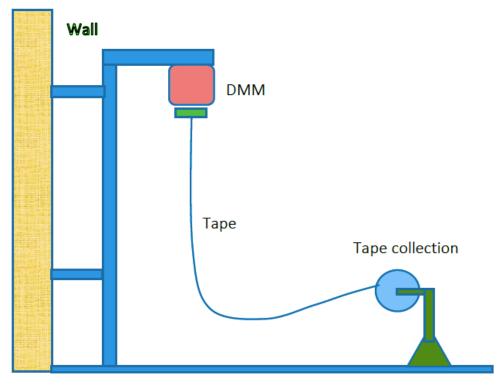
- Partial deployment test
- ✓ Initial and critical acceleration phase
- ✓ Needs manual intervention



4. Future Developments

End-to-End Deployment tests

- ✓ End-to-end deployment requires to deploy approximately 500 m of tape
- ✓ Up-side-down configuration for preventing manual intervention
- ✓ A recollecting machine was designed and manufactured to roll up the tape postdeployment, facilitating its gathering after extraction from the DM.


The DMM in the up-side-down configuration

4. Future Developments

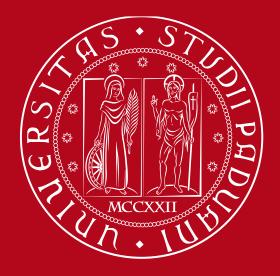
Re - Collecting Machine

- ✓ retrieves and rewinds the tape
- manages tape exit speed variability and rotation to correct twists and rewind
- ✓ control software utilizes a camera to detect deployed tape amount and twists

The Re-Collecting Machine

5. Final Remarks

The Deployer Mechanism (DMM)


- ✓ The tape spool design was validated through:
 - Shaker Tests
 - Cold Welding Tests
- ✓ The Deployer Mechanism design was validated through:
 - Constant velocity deployment tests
 - Specific Deployment profile test

Future Developments

✓ Re-Collecting Machine for End-to-End Deployment tests

1222 * 2022 A N N I

UNIVERSITÀ DEGLI STUDI DI PADOVA

Thank you!