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Electric solar wind sail (E-sail) is a novel space propulsion

technology that harnesses energy by repelling the protons in

T /\:':/é/_ | Electrostjlltic fieIdAUX“iary ther
solar wind. The most prominent E-sail design features a central /// |F\\ ~ TR
spacecraft connected to long, thin tethers (main tethers) with Solar wind proton ’Z N
remote units at the tips of each tether. The remote units are — 277 '
connected by non-conductive tethers (auxiliary tethers) to Sc:/wi'nd E-sail
prevent the main tethers from winding together. The positively -
charged main tethers create a static electric field that repels sun
protons, generating thrust for the E-sail. Fig. 1. Configuration and operational principle of E-sail.
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Advantage
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prop Attitude control
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Coning motion
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Fig. 2. Schematic diagram of periodic coning motion.
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Probable perils

The E-sail's prolonged lifespan and thin tether diameter pose severe probable perils if the

continuous coning motion is not properly controlled.

@Peril 1 @Peril 2 @Peril 3

Accumulative fatigue The coning motion Chronic tether
from repeated stress adds complexity to bending  degrades
cycles in tethers controlling the E- electric conductivity,
heighten the risk of sail's attitude and reducing propulsive
tether breakage and trajectory. force and causing
compromising the E- trajectory deviations
sail's functionality.
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Mechanism

Consider the i, main tether as a sample as shown in Fig. 3(a) in the O, X.Y,Z, coordinate
system, the propulsive force will generate a torque 7, that pushes the tether rotating out of the
nominal spin plane with respect to the central spacecraft, and the centrifugal forces due to the
inertia of the 1, main tether and remote unit will generate a restoring torque 7, to push the

main tether rotating back to the nominal spin plane.

- . : Le
Tt > TC ﬂ T I:,:SITLB%‘a ] | o ; \
. Spin '?/‘ » ! plane \‘(m om,+m /3) 2
4 Z-'[ — TC max e v\ < Auxmamew S |
. sw oo = Y, T E :',' L
th < TC —— ﬂ i/ ~& : Eﬁi’;" Main tether
. AN Remote unit I ™~
|
Where [ and S are the coning angle and its fa)) Fsing, o o
velocity of the E-sail Fig. 3. Free-body diagram of an E-sail.
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Period

From the free-body diagram, the equation of the coning motion is derived from the

moment balance about the central spacecraft, as shown in Fig. 3(c), that is,
(m, +m, +m,/3)L*fB, =—z,

Forasmall g, cos . =1 and sin S, = f;. Therefore, the Equation is simplified as

B +{® =T, /[(m +m +m/3)L]} B =0

Thus, the angular frequency of the coning motion is obtained as,

@:\/wz ~T./[(m, +m, +m,/3)L |

According, the period of the coning motion is,

2z

S

T
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Initial elongation of the main tether

Assume that all tethers are straight and taut. Then,

the elongation of the main tethers, AL, , after the E-

sail is fully deployed can be determined by the free-

Auxiliary tether

body diagram of the remote unit as shown in Fig. 4(a),

Main tether
such that, L, (Lmo_l_ALm
F =T

c

F, =(m, +m, )(L,, + AL, )®’

Nominal
spin plane

Lno+ALy,
LA Pl (Lo + AL, )dl @ )
0 Fig. 4. (a) Geometric relationship among main and auxiliary
=M, |_mtala)2 tethers; (b) Coning motion equilibrium position.

T=T,+2T, sin(7z/N)
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where
meff = (mr + mau + LmOIO/Z)

T_and T,, are determined by Hooke" s law,

(Tm = EmAnALm/LmO

3

\Tau — Eau AauALau/ I‘auo

L,y = 2L, 8in(7/N)

AL, =2AL, sin(7/N)

Thus, the initial elongation of the main tether is

2 2
M Lo @

AL, = _ :
E.A, +2E, A, sin(z/N)-myL, .0
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Coning angle

Recalling that the E-sail’ s coning motion is harmonic, the equilibrium state of E-sail can be
obtained through the coning motion’ s equilibrium position where the restoring force is zero,

as shown in Fig. 4(b), such that
F. ,sinB, +Fcos(B,+0)=F, ,/2+2T,, ,sin(n/N)sing,

where the centrifugal force F. ;, gravitational force F, and tension T.. s can be written as

{FC_ ,=Fcosp, T, ,=T,c0sp,
Fg = _1u®meff /dszr
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Coning angle

Then, the propulsive force acting on the main tether ( F, ;) is derived as

Fo.o=1 (Lmo +ALm)

where
fy =0.18max(0V, -V, ) /em,n v, =ov,

VO =v(I7 X )x 1P
1> =[cosp.cosé,  cospsing  sing,|
& =2n(i-1)/N

[ cos? B, cos® & —cotasin B, cos 3, cos & —1
V] ; =vsina| cos® B,sin& cosé —cotasin B, cos B,siné,
cota cos” 3, +sin 3, cos B, COS &,
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Coning angle

To solve the coning angle f, , the first main tether i =1 is selected to obtain Fp_l without
the loss of generality, which results
 —sinasin®g, —cosasing,cosf,
Ve =v 0

cosacos’ B, +sinasinf,cosp,

F, 1 =|F, 1| =0Vl (sinasing, + cosacosp, )
Forasmall g8, cos B, =1 and sin B, = f.. Thus, the propulsion force is simplified as

Fo_1 = VL (Bsina + cosa)
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Coning angle

Then, the coning angle at the equilibrium state can be obtained as

VL 4, COS
F+F, - 2Tausin(n/N))—Gthota.Sina

,Be=2(

Furthermore, the maximum coning angle, , can be determined intuitively from the geometry
shown in Fig. 4(b), such that,
ﬂmax = zﬂe: (

ovlL,,Cosa
F, +F, = 2T,sin(n/N)) - ovL,sina /2
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Table 1. Parameters of the parametric investigation.

Label m, (kg) @y (rad/s) E-sail configuration Initial coning angle (degree)
Case A 0.5 0.004 No auxiliary tether 0
Case B 1.5 0.004 No auxiliary tether 0
Case C 0.5 0.004 Auxiliary tether 0
Case D 1.5 0.004 Auxiliary tether 0

Case E 1.5 0.003 No auxiliary tether 0

Case F 1.5 0.003 Auxiliary tether 0
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Fig. 5. Time histories of the coning motion of different remote unit masses
without (a) and with (b) the auxiliary tether.
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Fig. 6. Time histories of the coning motion of different initial spin rates
without (a) and with (b) the auxiliary tether.
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Table 2. Physical Properties of tethers.

PEIEINEES

Remote unit mass (kg)
Main tether Young’ s modulus (GPa)

Auxiliary tether Young' s modulus (GPa)

Main tether linear density (kgm-1)

Auxiliary tether linear density (kgm-1)

Main tether radius (m)

Values

1.5
70
2.5

1.155%10-

2.705x104

3.690
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Fig. 7. Time histories of the maximum coning angle with different sail angles
(a) CZ:OOI (b) 0523001 (C) CZ:45o 1 and (d) 052600 .
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Maximum coning angle
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Fig. 8. Time histories of the maximum coning angle with different main tether
lengths (a) 5km, (b) 10km, (c) 15km, and (d) 20km.
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Fig. 9. Time histories of the coning angle under the equilibrium with different sail angles
@ a=0",(0)a=30",(c) a=45" ,and (d) « =60° .
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Fig. 10. Time histories of the coning angle under the equilibrium with different main tether
lengths (a) 5km, (b) 10km, (c) 15km, and (d) 20km.
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Conclusions

This work provides a comprehensive study of the periodic coning motion of an axially

symmetric E-sail with auxiliary tethers at arbitrary angles.

[(5]] This work unveils the underlying mechanism behind the periodic coning motion of the

E-sail, and provides the analytic solution for its oscillation frequency.

[(5]] This work determines the maximum coning angle and equilibrium state of the E-sail.

[(5]] This work examines the E-sail's ability to maintain its equilibrium state from an initial

equilibrium configuration.

The research presented in this study lays a solid foundation for the practical application of

the E-sail system.
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