Optimal Control Approach for Stable E-Sail Transitions

7th International Conference on Tethers in Space

June 2-5, 2024, York University, Toronto, Canada

Guillermo Pacheco-Ramos¹, Rafael Vazquez¹, Daniel García-Vallejo²

¹Department of Aerospace Engineering, Universidad de Sevilla, Seville, SPAIN; <u>gpacheco@us.es</u>, <u>rvazquez1@us.es</u>

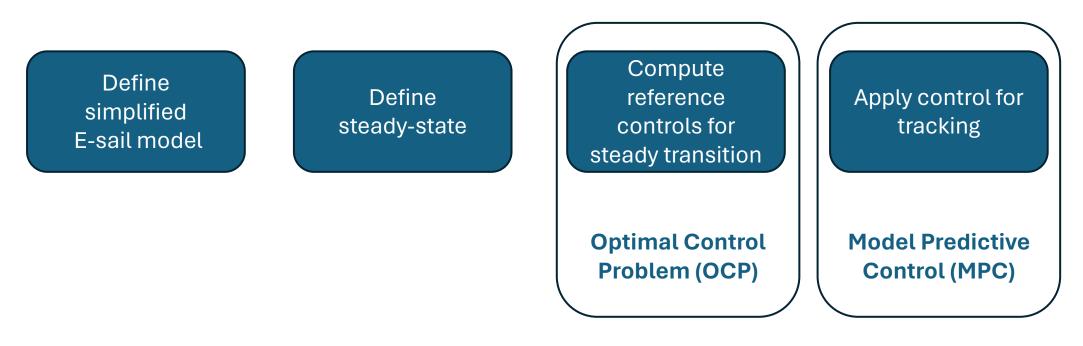
² Department of Mechanical Engineering and Manufacturing, Universidad de Sevilla, Seville, SPAIN; <u>dgvallejo@us.es</u>

Content

- Objectives
- Description of E-sail model
- Problem formulation
 - Steady-state description
 - The transition maneuver
 - Optimal planning
 - Tracking
- Simulation results
- Conclusion & future works

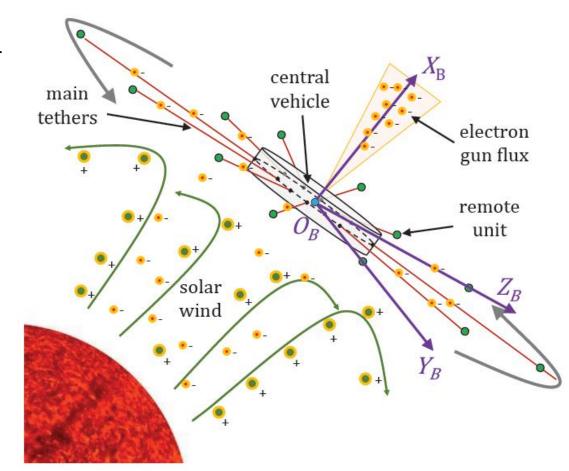
Objectives

- Analyze the feasibility of stable transition for an underactuated E-sail.
- Validate the applicability of a procedure that may be extended to more accurate E-sail models and operating conditions and maneuvers.



Description of E-sail model

- Multi-body perspective:
 - Central vehicle is a rigid cylinder
 - Tethers
 - Straight and rigid
 - No secondary tethers
 - Remote units
 - Punctual masses
- Contributions
 - Inertial forces
 - Coulomb forces
 - Control moment
 - Orbit forces neglected



Description of E-sail model

Formulation considering a minimum set of coordinates in ODE form.

Tethers

• Coning angle vector $\mathbf{\gamma}$

 X_{Zi}

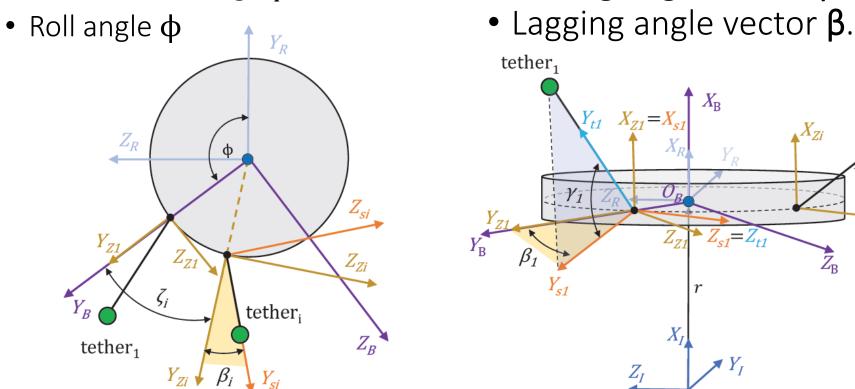
 $\overline{Z}_{\rm B}$

tether,

 Y_{Zi}

Central vehicle

• Movement along $X_I : r$



Description of E-sail model

Formulation considering a minimum set of coordinates in ODE form.

- Controls
 - Voltage modulation vector $\overline{oldsymbol{v}}$
 - Control moment at central vehicle \overline{m}_c
- Nonlinear dynamic in states space representation $M(x) \dot{x} = f(x, u)$

being

$$\boldsymbol{x} = \begin{bmatrix} \dot{\boldsymbol{\phi}}, \, \boldsymbol{\bar{\gamma}}^T, \, \boldsymbol{\bar{\beta}}^T \boldsymbol{\phi}, \, \boldsymbol{\gamma}^T, \, \boldsymbol{\beta}^T \end{bmatrix}^T \qquad \boldsymbol{u} = \begin{bmatrix} \boldsymbol{\bar{\nu}}^T, \, \boldsymbol{\overline{m}}_c \end{bmatrix}^T$$

Problem Formulation - Steady-state

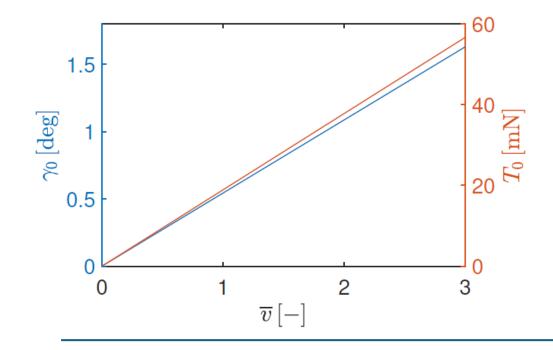
Definition:

- Central spacecraft angular velocity equal to the nominal value $\overline{\Phi} = \overline{\Phi}_0$,
- And constant linear acceleration of the E-sail $\frac{\ddot{r}}{r} = \frac{\ddot{r}_{0}}{r_{0}}$,
- Null lagging angle, $\beta = 0$,
- Uniform coning angle, $\mathbf{\gamma} = \mathbf{\gamma}_0$,
- Null tether angular velocities, $\frac{\dot{\gamma}}{\gamma} = \frac{\dot{\beta}}{\beta} = 0$,
- Null angular accelerations, $\frac{\ddot{\gamma}}{\gamma} = \frac{\ddot{\beta}}{\beta} = 0$.

Problem Formulation - Steady-state

$$\left(\overline{J}\,\sin(2\,\gamma_0) + \overline{m}\,\sin(\gamma_0)\right)\dot{\overline{\phi}}_0^2 + \frac{(p\,\overline{m}\,\cos^2(\gamma_0) - 1)}{\overline{R}}\overline{f}_{\nu 0}\,\overline{\nu}_0\,\cos(\gamma_0) = 0$$

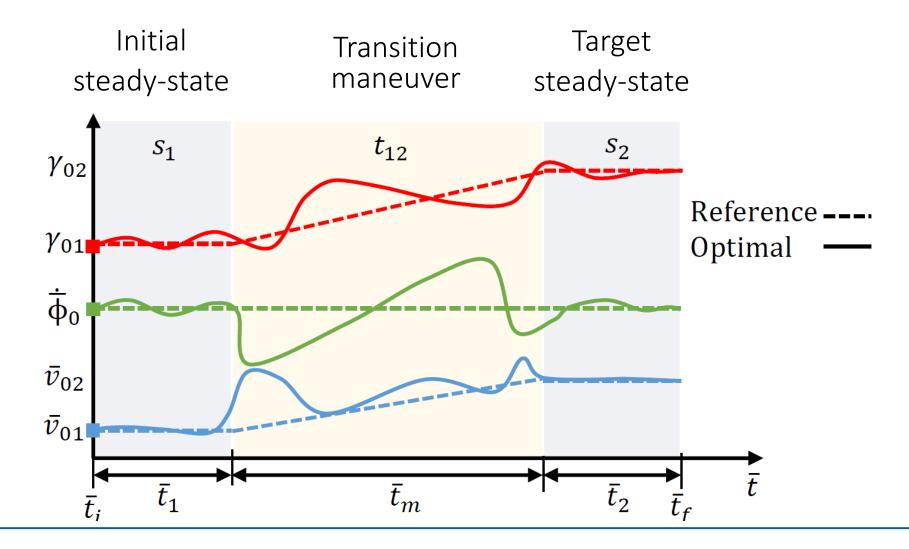
$$\ddot{\overline{r}}_0 - p \,\overline{f}_{\nu 0} \,\overline{\nu}_0 \,\cos^2(\gamma_0) = 0$$



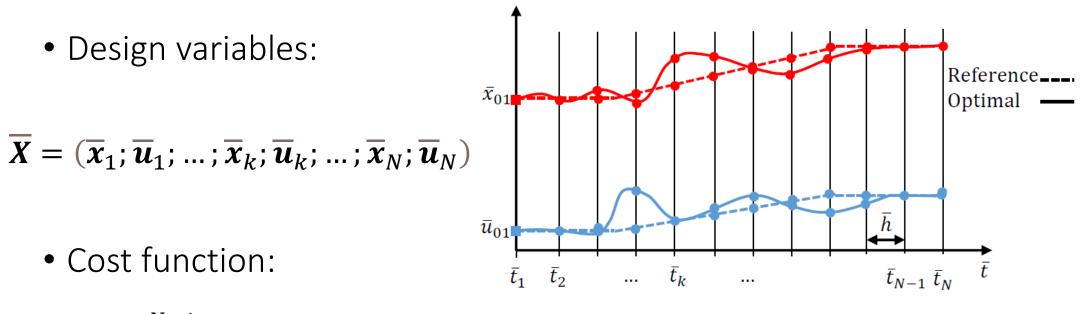
 \overline{J} : normalized tether inertia \overline{m} : normalized E-sail mass p: number of tethers \overline{R} : normalized central spacecraft radius \overline{f}_{v0} : normalized reference Coulomb force $\dot{\phi}_0$: normalized nominal angular speed

 \overline{v}_0 : normalized voltage modulation for steady state γ_0 : steady-state coning angle \overline{r}_0 : normalized steady-state propulsive acceleration

Problem Formulation - The transition maneuver



- Inversion of the non-linear E-sail dynamics:
 - Achieve stable transition between steady-states.
 - Considering an underactuated system.
- Solution approach:
 - Formulation from the optimal control problem (OCP) perspective.
 - Solved considering a direct transcription method.
 - Leading to a nonlinear programming problem (NLP).



$$J^{d} = \sum_{k=1}^{N-1} \overline{h} \left(\widehat{\boldsymbol{x}_{k}^{T}} Q_{k} \widehat{\boldsymbol{x}_{k}} + \widehat{\boldsymbol{u}_{k}^{T}} R_{k} \widehat{\boldsymbol{u}_{k}} \right) + \widehat{\boldsymbol{x}_{N}^{T}} Q_{N} \widehat{\boldsymbol{x}_{N}} + \widehat{\boldsymbol{u}_{N}^{T}} R_{N} \widehat{\boldsymbol{u}_{N}}$$

 $\widehat{x_k}/\widehat{u_k}$: normalized state/control vector error respect to reference. Q_k/R_k : state/control weight matrix. Q_N/R_N : state/control terminal weight matrix.

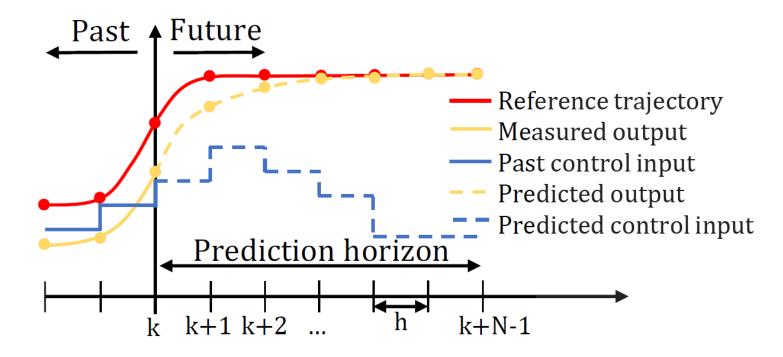
• Reference:

$$\begin{split} \mathbf{\bar{x}}_{k}^{r} &= \begin{cases} \begin{bmatrix} \overline{\phi}_{0} & \mathbf{0}^{T} & \mathbf{0}^{T} & (k-1)\overline{h} \,\overline{\phi}_{0} & \mathbf{\gamma}_{01}^{T} & \mathbf{0}^{T} \end{bmatrix}^{T} & \text{if } (k-1)\overline{h} \leq \overline{t}_{1} \\ \begin{bmatrix} \overline{\phi}_{0} & \mathbf{0}^{T} & \mathbf{0}^{T} & (k-1)h \,\overline{\phi} & \overline{\mathbf{\gamma}}_{01}^{T} + \frac{(k-1)\overline{h}-\overline{t}_{1}}{\overline{t}_{m}} \left(\overline{\mathbf{\gamma}}_{02} - \overline{\mathbf{\gamma}}_{01} \right)^{T} \mathbf{0}^{T} \end{bmatrix}^{T} \text{if } \overline{t}_{1} < (k-1)\overline{h} \leq \overline{t}_{1} + \overline{t}_{m} \\ \begin{bmatrix} \overline{\phi}_{0} & \mathbf{0}^{T} & \mathbf{0}^{T} & (k-1)h \,\overline{\phi}_{0} & \overline{\mathbf{\gamma}}_{02}^{T} & \mathbf{0}^{T} \end{bmatrix}^{T} & \text{if } \overline{t}_{1} + \overline{t}_{m} < (k-1)\overline{h} \leq \overline{t}_{1} + \overline{t}_{m} + \overline{t}_{2} \\ \begin{bmatrix} \mathbf{0} & \overline{\mathbf{v}}_{01}^{T} & \mathbf{0}^{T} \end{bmatrix}^{T} & \text{if } (k-1)\overline{h} \leq \overline{t}_{1} \\ \begin{bmatrix} \mathbf{0} & \overline{\mathbf{v}}_{01} + \frac{((k-1)\overline{h}-\overline{t}_{1})}{\overline{t}_{m}} \left(\overline{\mathbf{v}}_{02} - \overline{\mathbf{v}}_{01} \right)^{T} & \mathbf{0}^{T} \end{bmatrix}^{T} & \text{if } \overline{t}_{1} < (k-1)\overline{h} \leq \overline{t}_{1} + \overline{t}_{m} \\ \begin{bmatrix} \mathbf{0}^{T} & \overline{\mathbf{v}}_{02} & \mathbf{0}^{T} \end{bmatrix}^{T} & \text{if } \overline{t}_{1} + \overline{t}_{m} < (k-1)\overline{h} \leq \overline{t}_{1} + \overline{t}_{m} \\ \begin{bmatrix} \mathbf{0}^{T} & \overline{\mathbf{v}}_{02} & \mathbf{0}^{T} \end{bmatrix}^{T} & \text{if } \overline{t}_{1} + \overline{t}_{m} < (k-1)\overline{h} \leq \overline{t}_{1} + \overline{t}_{m} \\ \end{bmatrix} \end{split}$$

- Constraints equations:
 - Nonlinear associated to integration scheme RK-4.
 - Linear associated to initial boundary condition.
- $\widehat{\boldsymbol{c}} = \begin{bmatrix} \widehat{\boldsymbol{c}_{i_1}^T} & \widehat{\boldsymbol{c}_{i_2}^T} & \dots & \widehat{\boldsymbol{c}_{i_{N-1}}^T} & \widehat{\boldsymbol{c}_{b_1}^T} \end{bmatrix}^T$
- Initial iterant is defined equal to reference states and controls.
- Resolution:
 - Considering matlab *fmincon* function.
 - Optimal planning \mathbf{X}_p .
 - Optimal open-loop control law, $\overline{u}_p(\overline{t}_k)$, is extracted at the discretization points for k = 1, ..., N.

Problem Formulation - Tracking

- Application of open-loop optimal control law not ensures tracking the optimal reference.
- Feedback control is needed: Model Predictive Control (MPC).

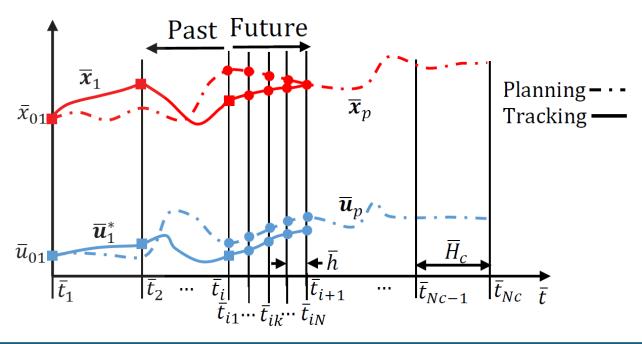


Problem Formulation - Tracking

Based on predicted system evolution solve OCPs for $i = 1, ..., N_c$

$$\boldsymbol{X}_{i} = (\overline{\boldsymbol{x}}_{i1}; \overline{\boldsymbol{u}}_{i1}; ...; \overline{\boldsymbol{x}}_{ik}; \overline{\boldsymbol{u}}_{ik}; ...; \overline{\boldsymbol{x}}_{iN}; \overline{\boldsymbol{u}}_{iN})$$

- Initial conditions are imposed.
- Initial iterant based on optimal planning.
- Solve ith-OCP to find X_i^* .
- Define \overline{u}_i^* .



Simulation results

Baseline parameters

Body	Dimension	Value
Main spacecraft	height, h_r [m]	2
	outer radius, <i>R</i> , [m]	1
	density, $\rho_r [\text{kg/m}^3]$	884
Tethers	number of tethers, <i>p</i> [-]	4
	nominal length, L_0 [km]	10
	section area, A_t [mm ²]	$4.28 \cdot 10^{-3}$
	section inertia, I_t [mm ⁴]	$1.47 \cdot 10^{-6}$
	density, ρ_t [kg/m ³]	7653
	Young modulus, E_t [GPa]	70
	Voltage, V_0 [kV]	20
Remote unit	mass, m_u [kg]	1.5

Transition definition

• Considering:

$$\overline{\nu}_{01} = 0$$
$$\overline{t}_1 = \overline{t}_2 = 0.25$$

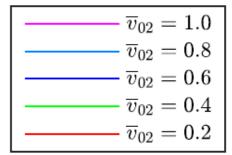
• Evaluate the impact of

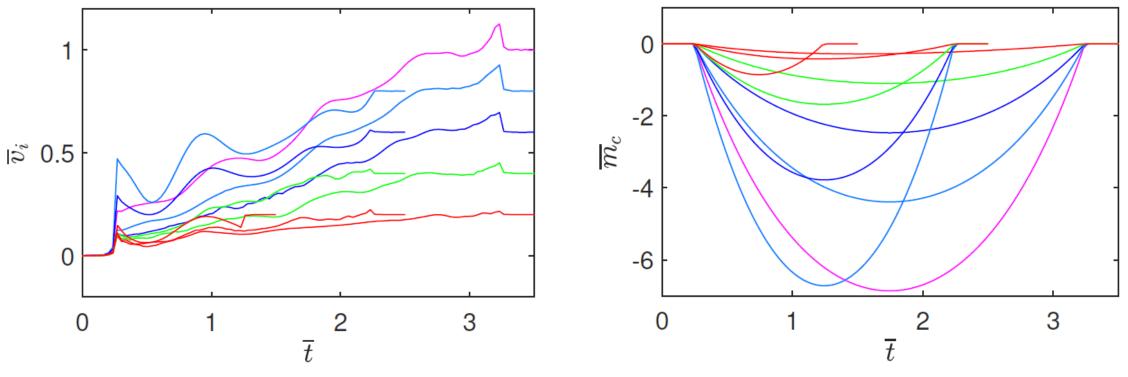
$$\overline{t}_m = 1.0, 2.0, 3.0$$

 $\overline{v}_{02} = 0.2, 0.4, 0.6, 0.8, 1.0$

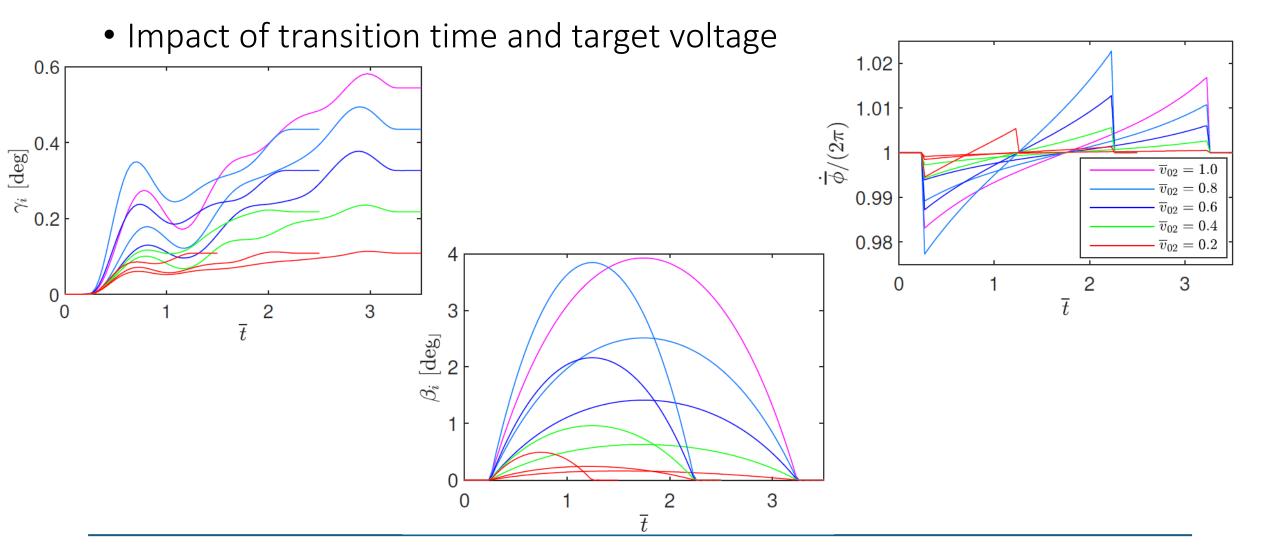
Simulation results - Optimal planning

• Impact of transition time and target voltage





Simulation results - Optimal planning



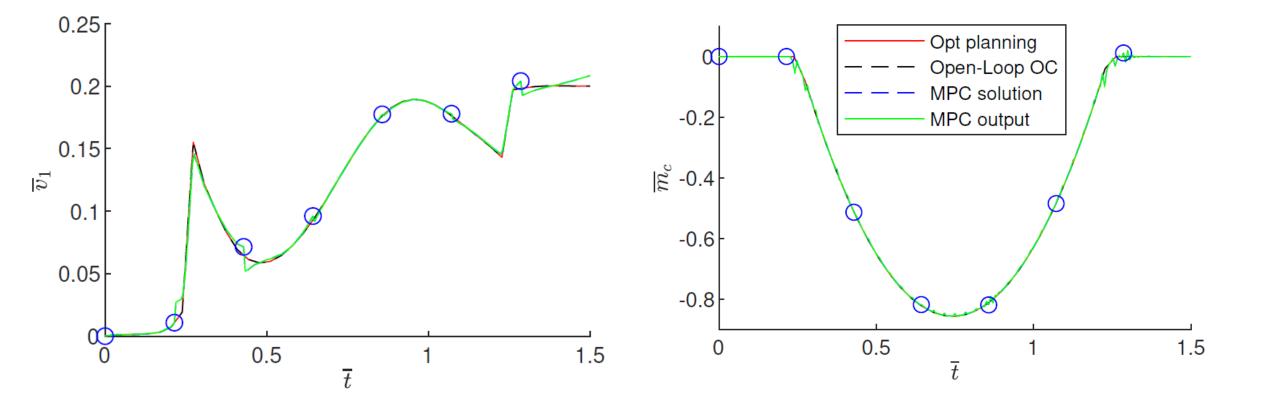
Simulation results - Tracking

• Case:
$$\overline{v}_{01} = 0, \overline{v}_{02} = 0.2, \overline{t}_m = 1.0$$

7th International Conference on Tethers in Space- June 2-5, 2024, York University, Toronto, Canada

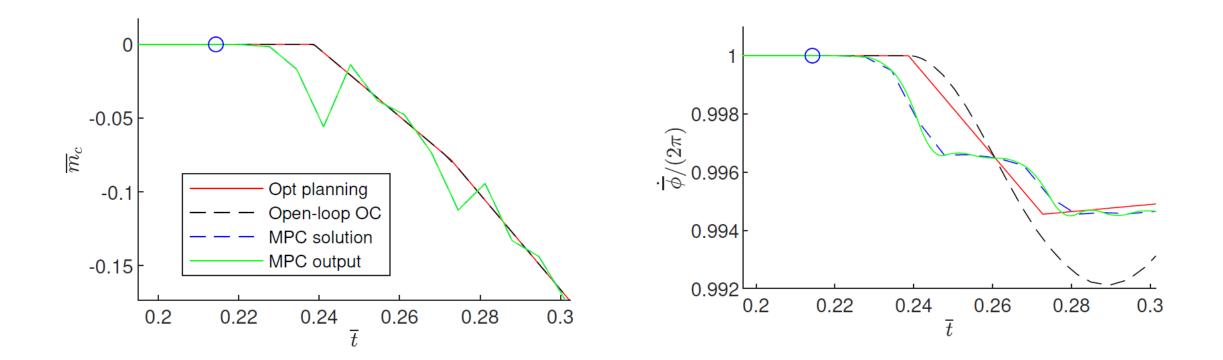
Simulation results - Tracking

• Case:
$$\overline{v}_{01} = 0$$
, $\overline{v}_{02} = 0.2$, $\overline{t}_m = 1.0$



7th International Conference on Tethers in Space-June 2-5, 2024, York University, Toronto, Canada

Simulation results - Tracking



7th International Conference on Tethers in Space-June 2-5, 2024, York University, Toronto, Canada

Conclusions and future works

- The results obtained suggest the feasibility of stable transitions using underactuated control for E-sail without secondary tethers.
- The proposed planning and tracking approaches yield satisfactory results in both problems.
- This study needs to be extended to more detailed E-sail models and operating scenarios.

Thank you for your attention!

7th International Conference on Tethers in Space- June 2-5, 2024, York University, Toronto, Canada