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Model Predictive 
Control (MPC)

Optimal Control 
Problem (OCP)

Objectives

• Analyze the feasibility of stable transition for an underactuated E-sail. 

• Validate the applicability of a procedure that may be extended to more 
accurate E-sail models and operating conditions and maneuvers.

7th International Conference on Tethers in Space- June 2-5, 2024, York University, Toronto, Canada 3

Define 
simplified

 E-sail model

Define 
steady-state

Compute 
reference 

controls for 
steady transition

Apply control for 
tracking



Description of E-sail model 

• Multi-body perspective: 
• Central vehicle is a rigid cylinder

• Tethers 
• Straight and rigid

• No secondary tethers

• Remote units
• Punctual masses

• Contributions
• Inertial forces

• Coulomb forces

• Control moment

• Orbit forces neglected
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Description of E-sail model

Formulation considering a minimum set of coordinates in ODE form.

Central vehicle
• Movement along 𝑋𝐼  : 𝑟

• Roll angle ϕ 
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Tethers
• Coning angle vector γ
• Lagging angle vector β. 



Description of E-sail model

Formulation considering a minimum set of coordinates in ODE form.

• Controls
• Voltage modulation vector 𝒗 

• Control moment at central vehicle 𝑚𝑐

• Nonlinear dynamic in states space representation

 being
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Problem Formulation - Steady-state

Definition:

• Central spacecraft angular velocity equal to the nominal value ሶ
ϕ =

ሶ
ϕ

0
,

• And constant linear acceleration of the E-sail ሷ𝑟 = ሷ𝑟0,

• Null lagging angle, 𝜷 = 𝟎, 

• Uniform coning angle, 𝛄 = 𝛄0, 

• Null tether angular velocities, ሶ𝜸 = ሶ𝜷 = 𝟎,

• Null angular accelerations, ሷ𝜸 =
ሷ

𝛃 = 𝟎.
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Problem Formulation - Steady-state
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𝐽:  normalized tether inertia
𝑚 : normalized E-sail mass
𝑝: number of tethers

𝑅: normalized central spacecraft radius

𝑓
𝑣0

: normalized reference Coulomb force
ሶത𝜙0 : normalized nominal angular speed

𝑣0 : normalized voltage modulation for steady state
γ0: steady-state coning angle

ሷ𝑟0: normalized steady-state propulsive acceleration

𝐽 sin 2 γ0 + 𝑚 sin γ0
ሶത𝜙0
2 +

𝑝 𝑚 cos2 γ0 − 1

𝑅
𝑓

𝑣0
𝑣0 cos γ0 = 0

ሷ𝑟0 − 𝑝 𝑓
𝑣0

𝑣0 cos2 γ0 = 0



Problem Formulation - The transition maneuver
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Problem Formulation - Optimal planning 

• Inversion of the non-linear E-sail dynamics:
• Achieve stable transition between steady-states.

• Considering an underactuated system.

• Solution approach:
• Formulation from the optimal control problem (OCP) perspective.

• Solved considering a direct transcription method. 

• Leading to a nonlinear programming problem (NLP).
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Problem Formulation - Optimal planning 

• Design variables:

• Cost function:
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𝐽𝑑 = ෍
𝑘=1

𝑁−1

ℎ ෢𝒙𝑘
𝑇𝑄𝑘 ෞ𝒙𝑘 + ෢𝒖𝑘

𝑇𝑅𝑘 ෞ𝒖𝑘 + ෢𝒙𝑁
𝑇 𝑄𝑁 ෞ𝒙𝑁 + ෢𝒖𝑁

𝑇 𝑅𝑁 ෞ𝒖𝑁

ෞ𝒙𝑘/ෞ𝒖𝑘: normalized state/control vector error respect to reference.
𝑄𝑘/ 𝑅𝑘 : state/control weight matrix. 
𝑄𝑁/ 𝑅𝑁 : state/control terminal weight matrix.  

𝑿 = 𝒙1; 𝒖1; … ; 𝒙𝑘; 𝒖𝑘; … ; 𝒙𝑁; 𝒖𝑁



Problem Formulation - Optimal planning 
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• Reference:



Problem Formulation - Optimal planning 

• Constraints equations:
• Nonlinear associated to integration scheme RK-4. 

• Linear associated to initial boundary condition.

• Initial iterant is defined equal to reference states and controls.

• Resolution:
• Considering matlab fmincon function.

• Optimal planning 𝐗𝑝 .

• Optimal open-loop control law, 𝒖𝑝 𝑡𝑘 , is extracted at the discretization 
points for 𝑘 = 1, … , 𝑁.
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ො𝒄 = ෢𝒄𝑖1

𝑇  ෢𝒄𝑖2

𝑇  … ෣ 𝒄𝑖𝑁−1

𝑇  ෢𝒄𝑏1

𝑇
𝑇



Problem Formulation - Tracking

• Application of open-loop optimal control law not ensures tracking the 
optimal reference.

• Feedback control is needed: Model Predictive Control (MPC). 
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Problem Formulation - Tracking

Based on predicted system evolution solve OCPs for 𝑖 = 1, … , 𝑁𝑐   

• Initial conditions are imposed.

• Initial iterant based on optimal planning.

• Solve ith-OCP to find 𝑋𝑖
∗.

• Define 𝒖𝑖
∗
.
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𝑿𝑖 = 𝒙𝑖1; 𝒖𝑖1; … ; 𝒙𝑖𝑘; 𝒖𝑖𝑘; … ; 𝒙𝑖𝑁; 𝒖𝑖𝑁



Transition definition 

• Considering: 

• Evaluate the impact of

Simulation results
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Baseline parameters

𝑡1 = 𝑡2 = 0.25

𝒗01 = 0

𝑡𝑚 = 1.0, 2.0, 3.0

𝒗02 = 0.2, 0.4, 0.6, 0.8, 1.0



Simulation results - Optimal planning
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• Impact of transition time and target voltage 



Simulation results - Optimal planning
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• Impact of transition time and target voltage 



• Case: 𝑣01 = 0, 𝑣02 = 0.2, 𝑡𝑚 = 1.0

Simulation results - Tracking
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Simulation results - Tracking
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• Case: 𝑣01 = 0, 𝑣02 = 0.2, 𝑡𝑚 = 1.0



Simulation results - Tracking

7th International Conference on Tethers in Space- June 2-5, 2024, York University, Toronto, Canada 21



Conclusions and future works

• The results obtained suggest the feasibility of stable transitions using 
underactuated control for E-sail without secondary tethers.

• The proposed planning and tracking approaches yield satisfactory 
results in both problems.

• This study needs to be extended to more detailed E-sail models and 
operating scenarios.
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Thank you for your attention!
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