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Small fly-around satellites?

Nanosatellites are equipped with monitoring 

devices to perform a periodical surrounding 

relative to the space station [1-2].

4

Fast controlled fly-around
reling on impulsive thrust, leading to 

high fuel consumption and an inability 

to sustain long-term monitoring[16,17].

Natural fly-around.

complex orbit changes and gradual 

approach control, prolonged period of 

natural fly-around mode[6,11].

Limitation
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Fly-around mission process with STS

I. A tethered satellites system in undeployed 

state is launched into orbit 

Ⅱ. docking with the space station module. 

Ⅲ. The satellites are deployed to designated 

positions around the space station, 

Ⅳ. STS starts spin up to desired spinning rate

Ⅴ. Form a stable fly-around configuration. 
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(a) Planar fly-around                         (b) Vertical fly-around 

Two different fly-around schemes 

During the whole fly-around process, maintaining a stable spinning configuration in these planes is 

crucial for the tether system to effectively prevent entanglement with space station's solar panels.
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Dynamic model

Ⅰ. The lumped model avoids the problem of singularities. 

Ⅱ. When TFSF is spinning spatially, the coupling definition of two angles leads to incorrect calculation 

of angles, which makes it difficult to study STS spinning motion.
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A new spinning coordinate system

The transition matrix from the orbital motion coordinate system 

to the spinning plane coordinate system is represented as  

where
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Reference trajectories transition from             to 
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where

The spinning motion in the orbital motion coordinate system is calculated as follows:

1 1 1 2Cxyz Cxyz

i cs i i cs i, ,i , .− −= = =P L P U L V

The spinning velocity of the fly-around satellites in the orbital motion coordinate system is calculated as:
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Reference trajectories transition from             to 
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The spinning plane vector  is                                  ,                         is the absolute vector difference 

between fly-around satellites in the                frame 

(6)
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Controller design
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The error function is defined as follows

                                                                             

where   is reference trajectory. The tracking error dynamics is expressed as
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The control law is defined as
(4)

where ,  are respectively the error of position and velocity,   is virtual controls,  is the 

control coefficient
1ξ 2ξ 1 1a dk= − +α ξ ξ ak

Dynamic eqution of STS can be rewritten as
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A positive definite Lyapunov function is defined as

The derivative of the Lyapunov function is
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when the control coefficients   and  are both greater than 1/2, . the law in (4) ensures asymptotic 

stability of system.
ak

bk 0V

Controller design
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Planar fly-around  

Fig. 1. Trajectories of satellites motion 

Fig. 2. Main characteristics of tether length and tension
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Planar fly-around  

Fig. 1. variations in the angle   ,   and  Fig. 2. Trajectories of fly-around satellites during the 

planar fly-around process

  b
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Vertical fly-around  

Fig. 1. Trajectories of satellites motion 

Fig. 2. Main characteristics of tether length and tension
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Vertical fly-around  

Fig. 1. variations in the angle   ,   and  Fig. 2. Trajectories of fly-around satellites during the 

vertical fly-around process

  b
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Fuel consumption analysis  

Fig. 1. comparison of thrust with/without tether

Table 1 Comparison of impulse with/without tether 

within 1 orbital period

During planar spin, 62.8% saving of impulse can be achieved compared to the traditional untethered fly-around, 

while the vertical fly-around scheme results in 42.9% decrease in impulse. 

Non-tethered fly-

around
Tethered fly-around

Scheme I 

(Planar)

Impulse consumption 

(16673.8 N.s)

Impulse consumption 

(6196.6 N.s)

Scheme II 

(Vertical)

Impulse consumption 

(16673.8 N.s)

Impulse consumption 

(9504.2 N.s)
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Conclusion 

This study proposes a novel STS fly-around scheme to conduct space stations fly-around 

mission and validates its feasibility. 
1

2

3

4

The STS is modeled based on Newton-Euler method with a novel description of spinning 

motion, to overcome the singularity and coupling issues of commonly used models. 

Considering the structural constraints of the space station, the study designs two spinning fly-

around schemes and reference fly-around trajectories. Additionally, a backstepping controller 

is proposed for the tracking of fly-around satellites motion, ensuring s atable fly-around

configuration during the whole spinning process. 

Comparisons of fuel consumption among different fly-around schemes within one orbital period 

demonstrate that the STS fly-around scheme significantly reduces energy consumption compared 

to the untethered fly-around scheme. 

During planar spin, 62.8% saving of impulse can be achieved compared to the traditional 

untethered fly-around, while the vertical fly-around scheme results in 42.9% decrease in impulse. 
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