Electrodynamic Tether and Brake Sails Combination Deorbit Design

HENG JIANG

Beihang University, China

The Seventh International Conference on Tethers in Space, Canada

May 2, 2024

Overview

- Motivation
- Tethered Braking Sail Combinations Design
- Experimental Strategy
- Comparative Analysis of Different Deorbit

Strategies

Prospect : Future Work

ORBITAL DEBRIS CRISIS

Available from: H. Klinkrad, Space Object Catalogs, SSA Conference 15 Sep 2006, Colorado Springs

Distribution of Earth-orbiting objects by orbit (left) and object type (right)

Available from: (https://www.space-track.org/#/ssr), 2014 (accessed 06.01.14).

Distribution of LEO objects per orbit inclination

Pacific Scientific's SRM and an example SRM cluster for in-space applications

FEASIBILITY ANALYSIS

Available from: Hybrid Solar Sails for Active Debris Removal

Hybrid system of braking panels and electric tether to expand the structure

- Tethered Braking Sail Combinations Design
- Experimental Strategy
- Comparative Analysis of Different Deorbit

Strategies

Prospect : Future Work

Tethered Braking Sail Combinations Design

Parameters	Values	
Mass of satellite	5.0kg	
Mass of sail	5.0kg	
Tether length	10^0.5m	
Tether diameter	0.0005m	
Orbit altitudes	250-1000km	
Orbit inclination	0°-90°	

EXTERIOR DESIGN

Tethered Braking Sail Combinations Design

Overview

- Motivation
- Tethered Braking Sail Combinations Design
- Experimental Strategy
- Comparative Analysis of Different Deorbit
 Strategies
 - Strategies
- Prospect : Future Work

ORBITAL DYNAMIC MOTION OF THE SYSTEM

an orbital plane coordinate system

Illustration of system coordinates for orbital motion

X

LIBRATION MOTION AND ATTITUDE DYNAMICS AND KINEMATICS

HIGHER-ORDER GEOMAGNETIC FIELD MODEL (IGRF 2000)

Track altitude 1000km: E_m view along the direction of the EDT

ATMOSPHERIC RESISTANCE

$$h_{g} = r - r_{po} \left(1 - e_{E}^{2} \cos^{2} \theta \right)^{-1/2}$$

The geodetic altitude instead of geocentric altitude should be used in the evaluation of the environmental parameters for the sack of accuracy

The relationship between atmospheric density and altitude

ATMOSPHERIC RESISTANCE

Overview

- Motivation
- Tethered Braking Sail Combinations Design
- Experimental Strategy
- Comparative Analysis of Different Deorbit

Strategies

Prospect: Future Work

Comparative Analysis of Different Deorbit Strategies

> SINGLE-TETHER STRATEGY

> SINGLE SAIL STRATEGY

Comparative Analysis of Different Deorbit Strategies

> BRAKING SAIL WITH MULTIPLE ELECTRODYNAMIC TETHER ATTACHED

Atmospheric drag over time

Comparative Analysis of Different Deorbit Strategies

COMPARISON OF THE EFFICIENCY OF THE THREE STRATEGIES

The targeted altitude for deorbit is assumed to be 250 km

time- consuming deorbiting Orbital Height	SINGLE-TETHER	SINGLE SAIL	HYBRIDSAIL (Braking Sail with Multiple Electrodynamic Tether Attached)
600KM	14.2year	0.28year	0.19year
700KM	18.5year	1.25year	0.8year
800KM	overstep the required level	4.3year	2.72year

SIMULATION RESULTS :

- On low orbits, brake sails have a better de-orbiting efficiency than EDT
- In the combined case, the hybrid strategy is more de-orbiting efficient than either of the other two

Overview

- Motivation
- Tethered Braking Sail Combinations Design
- Experimental Strategy
- Comparative Analysis of Different Deorbit

Strategies

Prospect: Future Work

Prospect: Future Work

DEFORMATION OF THE TETHERS

Prospect: Future Work

Prospect: Future Work

CONCLUSIONS AND OUTLOOK

 Braking sail and electrodynamic tethers combination off-orbit strategy proved to be effective and superior

> SCM probe (Reverse side

- Establishment of an environment that takes into account space environmental perturbations
- New ideas for future spacecraft de-orbiting

