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1. System description and problem
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Fig. 1(a) Sketch of two-body tethered system. Fig. 1(b) Trajectory in the configuration space.
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1. System description and problem

A3

Dynamics equations (dimensionless dumbbell model in 2D):
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| —I[(L+6)* —1+3cos’ 0] =-T
I. Underactuated
0+ 2|—(1+ @)+ 3sindcosd =0
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Usually, the control aim is to simultaneously stabilize | and @ at the desired
equilibria. Unlike fully actuated system, the underactuated system cannot
tracking arbitrary trajectories in the configuration space. However, the length
tracking is possible.
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1. System description and problem
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Relative equilibria (circular orbit): {9 " ke’

0=02k+D)x/2
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Hamiltonian metric:. h = 8% +3sin? @
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« h>= 3, the system will possibly spin-up
 h<3, locallystable around (0,0).
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1. System description and problem

Revisit of control strategies:

» Length control: uniformly, exponentially laws, or combinations...
» \elocity control(length rate control): similar to length control

» Tension control : Kissel’s control law, mission control, PD plus gravity...

Length /\Velocity control: open-loop controller achieves bounded stability.

Tension control: closed-loop controller can achieve asymptotic stability. (AS)
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1. System description and problem

The considered problem:

a). design an analytical velocity control law, achieving asymptotic
stabilization. (effectively suppress the residual oscillations)

b). consider the maximum libration angle constraints during
deployment/retrieval. (constraint the maximum libration angle)
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2. Simple velocity planning

We propose a simple velocity planning approach:

)= | (t) + f(6,0)

(Nominal velocity) (Libration suppressor)

» Needs the feedback of system information
» Guarantee the stability and has a simple form

» Feasible to convert into the tension controller Iif differentiable.
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2. Simple velocity planning

Step-1. Design of the nominal part: (guiding the tether to the desired

value.)
a). The nominal trajectory is sufficiently smooth and bounded, and

!im | (t) =1,
b). The nominal velocity is bounded and L,-convergence,

() e, NL,

Lemma 1: lim [ (£)=0.  Proof: Thisisa consequence by the Barbalat's lemma.

t—o0
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2. Simple velocity planning

Step-2. Design of the libration suppression: (damping injection.)

Recall the libration equation and take the linearized approximation:

6‘+2:—(1+ 0) +3sin@cosd =0
6+21+360=0]  (withlz=1)
A simple candidate is can be designed as
| = £(0,0):=ké, k>0
Libration angle will be asymptotically stabilized at the origin.
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2. Simple velocity planning
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By combining the two parts, the first velocity controller is

1(t) = I'n (t)+ké&  Controller-I
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Theorem 1.
Given simple velocity controller can guarantee liml(t) =1,, lim&=0.
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Proof: Take a candidate Lyapunov function V = %92 +§6’2

its derivative \ =—2| §—26? <[ 2—6%. Then, onehas 0 <L,NL,, indicating limé = 0.
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From Lemma 1, lim | =0, we have lim I(t) =0. Finally, by integration, can obtain liml(t)=1, W .
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2. Simple velocity planning
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Furthermore, consider the explicit constraint on maximum libration angle, 10| < O

I(t)=1_(t)+ f,(0,6)  Controller-Ii
safety part
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Step-2. Design the libration suppression with the safety critical guarantee.
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A candidate is designed as

(t)=1_(t)+kO/(6° ., —6?),k>0. Controller-II
Theorem 2.

Controller-11 can guarantee that liml(t) =1,, lim& =0, and 16| < 6,

JUapIU0I

LASSONDE YORK U Proof: Similar as in Theorem 1.

IIIIIII
IIIIIIIII

SCHOOL OF ENGIME

Department of Earth & Space Science & Eﬁgmeering




3. Simulation Results

Case 1: Deployment Simulation

Exponential nominal velocity function is selected an example. | (t) =cl, e

Tether Length |
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3. Simulation Results
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4. Conclusions

In this study, we present simple velocity planning control for TSS, where the
following two main remarks can be summarized.

1. By simple analytical design of the libration suppressor, the proposed
velocity control approach achieves the AS. Effetely remove the residual

oscillations .

2. Further consider the safety guarantee in the libration suppressor, the
proposed approach can constraint the maximum libration angle, while
ensuring the AS.
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