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Tethered Satellite Systems: 
With an increasing number of on-orbit missions, a tethered satellite 

system as a novel and potential practical tool has attracted more 

attention from scholars. 

• Low cost and reusable

• Altitude advantages of satellite deployment

• Complex space tasks can be accomplished

The Major Problem: 
Modeling an orbital tethered system is a challenging problem. 

• Different models were constructed.

• Simplified model qualitatively reveals global dynamic 

characteristics of the system.

• Sophisticated model can accurately depict dynamic behaviors. 

• Two different models as well as the dynamics of tethered 

satellites should be analyzed due to different levels of complexity.

1. Introduction of Tethered Satellite Systems

1.1 Background

Fig 1. Tethered Satellite System



1. Introduction of Tethered Satellite Systems

1.2 Research Focus

• Two models of tethered satellites are developed, including 

the Discrete Flexible Tether Model, and the Simplified 

Elastic Rod Model.

• The conditions for the emergence of chaos are identified by 

the elastic rod model and the Melnikov's method.

• Global dynamics are studied, particularly the chaotic 

motions, of the in-plane tethered system, by using the Cell 

Mapping Method.

• Analyzing the chaos of tethered satellites with different 

parameters. Numerical simulations are used to confirm 

the occurrence of chaos. The parameter domains in which 

chaos may occur are given.

Fig 1. Tethered Satellite System



A tethered satellite that moves along a circular low orbit is studied. 

The system under consideration consists of a mother satellite 𝑀, a 

sub-satellite 𝑆 and a connecting flexible tether, the masses of which 

are 𝑚𝑀, 𝑚𝑠 and 𝑚𝑡, respectively. The unstrained length of the 

elastic tether is 𝑙0. The orbital true anomaly and orbital inclination 

between the equatorial and orbital planes are defined as ν and 𝑖, 

respectively.

2.1 Introduction of Discrete Flexible Tether Model

We assume that both satellites are slender cylinders, one end 

of which is connected to the space tether. (Note that different 

shape assumptions would lead to distinct numerical results.) 

• An in-plane pitch angle 𝜽 for the system is defined as 

the angle from line 𝑜𝑀𝐸 to line 𝑜𝑀𝑜𝑆, as presented in 

Figure.

• An in-plane attitude angle 𝜽𝑴(𝑺)
concerning the satellite 

rigid body is also defined as the angle from line 𝑜𝑀(𝑆)
𝐸 to 

the axis of the cylinder. 

• In addition, a particle-spring model is used to discuss the 

dynamics of the infinite-dimensional elastic tether.

Fig 2. A two-body tethered satellite.

Fig 3. Definition of in-plane pitch (attitude) angle.



• The dynamic equation of the mass center of the element of the 

tether in the inertial coordinates 𝐸−𝑋𝐸𝑌𝐸𝑍𝐸 is formulated as:

2.2 Discrete Flexible Tether Model

where the prime represents the derivative with respect to time 𝑡, and 

𝑚𝑘 and 𝑟𝑘 are the mass of the node and the position vector of the 

node from the Earth’s center 𝐸.

• After calculate the principal moment vector of gravity of the 
mother satellite (sub-satellite) rigid body M

0(𝑛+1)
, and 

according to the Euler equation, the dynamic equation of 

attitude of the satellite rigid body is derived:

𝐺𝑘: The gravity of the mass center.

𝑇𝑘: The tension force from satellite (tether).

𝐹𝑘
𝑑: The air drag force.• In order to calculate the moment balance of the system, it is necessary 

to analyze the gravitational moments of the nodes of the rope system.

Parameters Explainations

𝜇𝐸 The Earth gravitational parameter

𝜎𝑈
𝑀(𝑠) The direction cosine between the 

coordinates and the position vector

𝑖𝑒,𝑗𝑒,𝑘𝑒 The unit vectors of the 𝑋𝐸 axis, 𝑌𝐸 axis 

and 𝑍𝐸 axis

𝐍0(𝑛+1) is the moment from the resultant external force.



2.3 Elastic Rod Model
The sophisticated discrete model can more accurately 

describe the dynamics of the original system, but may not 

predict global dynamic characteristics.

It is a simplified model of the tethered satellite 

system in the orbital plane. 

• A tether with microamplitude longitudinal 

oscillation is modeled as a uniform elastic 

straight rod of current length 𝑙 = 𝑙0(1 + 𝜀), 
where |𝜀| ≪ 1 is the longitudinal strain.

• Two satellites are viewed as cylinders, whose 

axes are always parallel to the tether.

• The dynamic equation of the orbital system in a 

nondimensional form:

• Using the torque formula and the 

principle of virtual work.

• Based on a straightforward application 

of the second Lagrange equation.

• θ is the generalized coordinate.

• The dynamic equation of the orbital 

system in a nondimensional form is:

Table 2. Definitions of Parameters in Model



• Describe how chaotic behaviors are identified in a 

nonautonomous two-dimensional system (Elastic Rod 

Model).

• Starting with the unperturbed Hamiltonian system, 

unstable equilibrium points and analytical heteroclinic 

orbits can be solved.

• As a necessary condition, the Melnikov method is used to 

analyze whether chaotic behaviors occur.

• Chaos might appear near heteroclinic points if the 

conditions solved by Melnikov method are satisfied.

3.1 Chaos Near Heteroclinic Points

Unstable Equilibrium Points P1,2: ( ∓ π/2, 0)

How to identify the chaos？
For the perturbed system, an invariant set that results in 
chaos is more likely to emerge if the stable and 
unstable manifolds intersect transversally in the 
vicinity of the saddle points.

Melnikov Function

• This equation implies that the sign of 𝑀(𝜈
0
) changes for a 

sufficiently small perturbation, so that the stable and unstable 

manifolds intersect transversally at heteroclinic points. 

Therefore, chaos might appear near heteroclinic points.

Heteroclinic Orbit



3.2 Simulation Results and Analysis

H = 820 km, ωεz = 5000 𝜇𝑒/𝑟𝑐
3   aε = 1 × 10 4

the parameter ratio: |γ /μ| = 0.0015 < 0.1528

Dynamic behavior depicted in the figure:

• Irregular in-plane pitch motion as true anomaly 𝜐 varies (Fig. 

4(a)).

• The Poincaré section of trajectories shows numerous transverse 

heteroclinic points near unstable saddle points (Fig. 4(b)).

• Power Spectrum Density (PSD) in Fig. 4(c) exhibits a significant 

power spectrum in the frequency range f∈[0, 0.25].

• Change in largest Lyapunov exponent λmax with ν illustrated in 

Fig. 4(d), consistently above 0.

Chaos Occur

Fig 4. Chaotic motion induced by microamplitude 

oscillation and atmospheric drag

Parameters Explainations

𝑚𝑀=500 kg
𝑚𝑆=50 kg,𝑚𝑡=0.5 kg

Masses of the satellites and 

tether

𝑙
0
=10 km, d𝑡=0.5x103 m

The unstrained length and 
diameter of the tether

𝐶𝑑,𝑀(𝑠,𝑡)=2.2
The drag coefficient of the 

satellites (tether)

𝐴𝑀 = 1.0m2, 𝐴𝑆 = 0.1m2 The representative areas of the 
satellites

𝑖 = π/4 The orbital declination

Chaos Occur!



3.2 Simulation Results and Analysis

• Utilization of discrete tether model to verify chaotic motion.

• Space tether, EA = 107 N, divided into 20 uniform 

elements.

• Variation in in-plane pitch angle with true anomaly 𝜈 

displayed in Fig. 5(a), showing alternating, non-periodic 

pendulum-like and spinning motions.

• The time history of coupling in-plane attitude angles of 

satellites is shown in Fig. 5(b), indicating intense irregular 

oscillations.

• Configuration change of flexible tether depicted in Fig. 5(c).

• Distance between the mother satellite and sub-satellite 

(dMS) illustrated in Fig. 5(d), indicating tether slackness 

due to atmospheric drag and microgravity field.

• Results consistent with elastic rod model results.
Fig 5. Chaotic motion based on the sophisticated 

discrete model.



3.2 Simulation Results and Analysis

Discussion on the impact of satellite attitudes on dynamics.

• Representative areas of two satellites: 𝐴𝑀 = 0, 𝐴𝑆 = 0 (viewed as mass points).

• Stable pendulum-like motion retained after transient chaos in Fig. 7.

• The dynamic behaviors on the basis of a particle-spring model are compared in Fig. 6, 

where the chaotic motion also disappears.

Conclusion: System dynamics are sensitive to the rigid body attitudes of satellites.

Fig 6. Dynamics of the system based on the particle-

spring model.

Fig 7. Dynamics of the system without rigid body 

attitudes.



3.2 Simulation Results and Analysis

Alteration of sub-satellite mass to 𝑚𝑆 = 25 kg.

• The influence of mass distribution on system dynamics is 

presented.

• Chaotic motion is significantly different from Fig. 4.

Conclusion: Dynamic behavior is governed by the mass 

distribution of the system.

Reset unstrained tether length to 𝑙0 = 7.5 km.

Inference of pendulum-like oscillation from pitch angle change.

• Characteristics indicating quasi-periodic motion.

• Peaks in power spectral density (PSD).

• Largest Lyapunov exponent approaching 0.

• Criterion |𝛾 /𝜇| = 0.0016 < 0.1528 met, but chaotic motion absent.

Conclusion: Dynamics affected by tether length.

Fig 8. Effect of the mass distribution on the dynamics.

Fig 9. Effect of the tether length on the dynamics.



3.3 Global Dynamics Analysis

• The orbital altitude reaches H = 820 km, chaotic motion, spinning 

motion, and pendulum-like motion occur, as shown in Fig. 12(a). 

• The initial states near the unstable saddle points and heteroclinic 

orbits might lead to chaotic motion. 

• The white zone corresponds to cells that eventually fall into the 

sink cell due to variable ranges. 

• The finite cell elements actually do not depict ergodicity in chaos; 

thus, this motion is only strictly identified as irregular. 

• The chaotic motion will disappear once the orbital altitude 

decreases to H = 420 km because the system parameters do not 

satisfy the inequality.

Fig 10. Division of the cell element.

Fig 11. Sketch chart of the cell mapping algorithm.

Fig 12. Global dynamics.



Chaotic behaviors in nonautonomous two-dimensional tethered satellite systems are revealed.

Chaos occurs when stable and unstable manifolds intersect transversally.

A critical ratio of perturbation parameters is provided.

Numerical results show:

• Higher orbital altitude and larger amplitude contribute to chaos.

• Dynamics depend on parameters like satellite attitudes, mass distribution, and tether length.

• A flexible tether model is structured in the form of discrete elements to verify the chaotic motion that 

appears in an elastic rod model.

• Conclusion: Perturbations may induce chaos in tethered satellites.

4. Discussions and Conclusions

Thank You For Listening!

Question Time

Chaotic behaviors of an in-plane tethered satellite 

system with elasticity


