

Suppression of Tether-net Shrinking Motion using Double-linked Bullet

Hirohisa Kojima & Yamato Aoyama Tokyo Metropolitan University

Outline of Contents

- 1. Research Background & Research Objective
- 2. Proposed Tether-net (Double-linked Bullet)
- 3. Bullet Ejection Angle Adjustable Mechanism
- 4. Numerical and Experimental Results
- 5. Conclusion and Future Work

1.1 Research Background

• Tether-net is expected as a promising tool for space debris capture.

• However, tether-net starts reshrinking after full deployment owing to tension.

• Reshrinking motion may deteriorate the debris capture capability of the tether-net.

1.1 Research Background (cont.) Previous existing methods for preventing tether-net's rebounding motion

Table 1. Drawback of previous methods for suppression of tether-net's rebounding motion

1.2 Research Objective

- A double-linked bullet is newly proposed as an alternative solution to the problem of tethernet's reshrinking motion after full deployment, and
- its effectiveness is studied numerically and experimentally.

2.1 Proposed Tether-net

Fig. 1. Tether-net configurations: (a) conventional and (b) proposed

2.2 Rebounding Motion Prevention Mechanism

Fig. 2. Conceptual mechanism of preventing tether-net reshrinking motion by double-linked bullet

2.3 Modeling for Simulations

Lumped mass-model

Tension(*i*-th node) $\underline{T}_{i,j} = \begin{cases} -T_{i,j} \hat{e}_{ij} & \text{if } (l_{i,j} > l_{i,j,0}) \\ 0 & \text{if } (l_{i,j} \le l_{i,j,0}) \end{cases}$ $T_{i,i} = k_{i,i} (l_{i,i} - l_{i,i,0}) + c_{i,i} (\boldsymbol{v}_{i,i} \cdot \hat{\boldsymbol{e}}_{i,i})$ Aerodynamic force model Drag $\underline{D}_{i} = \frac{1}{2} \rho v_{i}^{2} C_{Di} dl \boldsymbol{e}_{Di} \quad C_{Di} = 0.022 + 1.1 \sin^{3} \alpha_{i}$ (3) Lift $\boldsymbol{L}_{i} = \frac{1}{2} \rho v_{i}^{2} C_{Li} dl \boldsymbol{e}_{Li}$ $C_{Li} = 1.1 \sin^{2} \alpha \cos \alpha$

 α_i : Angle of attack

3. Tether-net Ejector

Ejection angle adjustable mechanism

Fig. 5. Ejection angle adjustable mechanism

4.1 Simulation Conditions

Tether-net Model

Table 2. Specifications of tether- net

Parameter	Value
Material	Kevlar
Diameter of string, d	1 mm
Net size	1 m × 1 m
Knot spacing (segment length), l	10 cm
Inner tether length	5 cm
Outer tether length	30 cm
Young's modulus	70.5 GPa
Mass of net excluding bullets	8.8 g
Damping ratio	3.2
Mass of inner bullet	33. 2 g
Mass of outer bullet	33. 2 g

Fig. 6. Tether-net model: (a) conventional and (b) proposed

4.2 Experimental Conditions

Table 3. Specifications of spring

Parameter	Value
Natural length	15 cm
Spring constant	0.231 N/mm
Compression distance	9 cm

Table 4. Ejection conditions

Parameter	Value	
Shooting angle	45 deg	
Bullet ejection speed	5.31 m/s	
Bullet ejection angle	15, 30, 45 deg	

Experimental setup Shooting angle Fig. 7. Experimental environment

4.3.1 Simulation Results (15deg)

Conventional tether-net

4.3.1 Simulation Results (30deg)

Conventional tether-net

4.3.1 Simulation Results (45deg)

Conventional tether-net

4.3.2 Simulation Results (1)

15

4.3.2 Simulation Results (2)

Table 5. Average deployment and reshrinking Speed

Conventional tether-net

	Deployment speed	Reshrinking speed	Rebounding factor
15deg	3.935 m ² /s	3.103 m ² /s	78.85 %
30deg	6.804 m ² /s	4.352 m ² /s	63.95 %
45deg	9.384 m ² /s	7.188 m ² /s	76.60 %

	Deployment speed	Reshrinking speed	Rebounding factor
15deg	2.751 m ² /s	2.566 m ² /s	93.28 %
30deg	5.568 m ² /s	1.870 m ² /s	33.58 %
45deg	8.975 m ² /s	2.938 m ² /s	32.74 %

4.4.1 Experimental Results (15deg)

Conventional tether-net

4.4.2 Experimental Results (30deg)

Conventional tether-net

4.4.3 Experimental Results (45deg)

Conventional tether-net

5.1 Conclusions

- A tether-net with double-linked bullets was proposed as a solution to the problem of tether-net reshrinking motion.
- The effectiveness of the proposed tether-net for suppressing the reshrinking motion was confirmed numerically and experimentally.

5.2 Future Study

 The optimization of inner and outer bullet mass ratio and outer tether length that can effectively suppress the reshrinking motion after the tether-net full deployment is of interest, thus should be studied in future.