

Along-Track Deployment Control of Space Tether System for SAR-GMTI Mission

Linxiao Li¹, Aijun Li¹, Hongshi Lu^{2,1*}, Changqing Wang¹

School of Automation, Northwestern Polytechnical University, Xi'an, China
 Research & Development Institute, Northwestern Polytechnical University, Shenzhen, China,

Linxiao Li (PhD student): <u>linx.li@mail.nwpu.edu.cn</u> Corresponding author: Dr. Lu <u>luhs@nwpu.edu.cn</u>

1. Introduction

SAR-GMTI Mission

ESA: Sentinel-1A (2014) Sentinel-1B (2016) TanDEM-X (2010) CNSA: TianHui-2 (2021) Radio detection and ranging (Radar)

Synthetic Aperture Radar (SAR)

Interferometric SAR (InSAR) mission:

- Digital Elevation models (DEM)
- Ground Moving Target Indications (GMTI)

The current distributed InSAR system suffers from problems:

- presence of **periodic variations** in the interference baseline
- **coupling** between different baseline components

1. Introduction

Main problems and highlights

- **1.** The horizontal position of STS is far **less studied** than the traditional vertical position
- Two optimal trajectory planning strategies are discussed under vertical and non-vertical initial conditions.
- 2. The GMTI mission has accuracy requirements
- A synthetic criterion of measurement error is proposed to value the deployment accuracy
- **3.** There are **initial state errors** and external **disturbances** in the actual situation
- An adaptive tracking controller is designed based on the backstepping method.

2. Dynamic formulation and criterion definition

STS dynamic model ess in-plane angular velocity 0 0000 0000 e=0.01 • $M(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=Q$ Equatorial Plane $\boldsymbol{M}(\boldsymbol{q}) = \begin{bmatrix} \mathbf{m}_{\mathrm{e}} & \mathbf{0} \\ \mathbf{0} & \mathbf{m}_{\mathrm{e}}l^2 \end{bmatrix}$ $(\overline{\cdot})$ Dimensionle $C(q, \dot{q}) = \begin{bmatrix} 0 & -m_{e}l(\dot{\alpha} + 2\dot{u}) \\ m_{e}l(\dot{\alpha} + 2\dot{u}) & m_{e}l\dot{l} \end{bmatrix}$ -0.005 -0.01 -0.1 0.05 0.1 -0.05 Dimensionless in-plane angle $\boldsymbol{g}(\boldsymbol{q}) = \begin{bmatrix} -\mathrm{m}_{\mathrm{e}}l\dot{u}^{2} - \frac{\mu\mathrm{m}_{\mathrm{e}}l}{R^{3}}(3\cos^{2}\alpha - 1) + \frac{kl\delta^{2}}{(1+\delta)^{2}} \\ \frac{3\mu\mathrm{m}_{\mathrm{e}}l^{2}}{R^{3}}\sin\alpha\cos\alpha \end{bmatrix} \begin{bmatrix} \boldsymbol{q}_{b} = [0,0]^{T} \text{ stable} \\ \lambda_{1,2} = \pm j\sqrt{3\mu/R^{3}} \\ \boldsymbol{q}_{b} = [\pm \pi/2,0]^{T} \text{ unstable} \\ \boxed{\boldsymbol{q}_{b} = [\pm \pi/2,0]^{T}} \end{bmatrix}$ • $\ddot{\alpha} = -\frac{3\mu}{R^3} \sin \alpha \cos \alpha \longrightarrow \dot{\bar{q}} = \begin{bmatrix} 0 & 1 \\ -\frac{3\mu}{R^3} \cos 2\alpha_b & 0 \end{bmatrix} \vec{q} \longrightarrow \lambda^2 + \frac{3\mu}{R^3} \cos 2\alpha_b = 0$

2. Dynamic formulation and criterion definition

Synthetic criterion of measurement error

 y_1, y_2 : ranges from the target to the center of SAR1 and SAR2 V_s : the speed of satellites v_r : the radial speed of the target relative to SARs $\lambda_b = 3 \text{ cm}$: the wavelength of the

 $\Delta \varphi$: interference phase difference

SAR in the GMTI mission

B : the length of the interference baseline

Case I: Combined tension and thrust strategy

Note:----->- indicates the forward direction of trajectory

(1) Tether deployment:

- the tether is deployed to the expected length L_k under tension control u_L
- the in-plane angle swings to the α_s
- the in-plane angular velocity $\dot{\alpha}_s \neq 0^{\circ}/s$

(2) The in-plane angle adjustment:

- apply control thrust u_{α} to keep $\dot{\alpha}_s$ constant until α_s to the range around 90°
- apply control thrust u_{α} to decrease the inplane angular velocity $\dot{\alpha}_1$ to $0^{\circ}/s$

Case II: Optimal tension strategy

Time-optimal tension control law:

$$u_{L}(t) = \begin{cases} u_{\min} & 0 \le t < t_{1} \\ u_{\min} + (u_{\max} - u_{\min}) \sin^{2} (k(t - t_{1})) & t_{1} \le t < t_{2} \\ u_{\max} & t_{2} \le t < t_{3} \\ u_{\max} (1 - \sin^{2} (k(t - t_{3}))) & t_{3} \le t < t_{4} \\ u_{\min} & t_{4} \le t \end{cases}$$

Note: ---->- indicates the forward direction of trajectory

$$\alpha_{2o} \neq 0^{\circ} \xrightarrow{u_L} \alpha_{2t} = 90^{\circ}$$

this strategy **does not introduce any additional thrust**, only by controlling the tension from the optimum initial position.

Selection of optimum initial position :

- Coriolis force effect should be considered
- The terminate in-plane angle $\alpha_{2t} = 90^{\circ}$ and angular velocity $\dot{\alpha}_{2t} = 0^{\circ}/\text{s}$ should be guaranteed.

Design of the closed-loop tracking controller

Theorem 1. Consider the STS (1) controlled by the adaptive backstepping tracking controller (2) with the adaptive law (3). Under assumptions 1 and 2, for any initial conditions satisfying $V(0) \le \sigma$ with a positive constant σ , the control errors converge to an adjustable neighborhood of the origin.

Case I (the sub-satellite in front of the main satellite)

Parameter	Description (Unit)	Value
а	Orbital semimajor axis (km)	6892.6
i	Orbital inclination in degrees ($^{\circ}$)	97.4
e	Orbital eccentricity (/)	0.0011
Φ	The argument of perigee in degrees (\degree)	90
Ω	The right ascension of the ascending node in degrees ($^{\circ}$)	0
u ₀	The initial true anomaly in degrees ($^{\circ}$)	0

Parameter	Description (Unit)	Value
m _A	Mass of the main satellite (kg)	400
m _B	Mass of the sub-satellite (kg)	350
m _t	Mass of tether (kg)	0.486
\mathbf{S}_{A}	The frontal area of the main satellite (m ²)	2
\mathbf{S}_{B}	The frontal area of the sub-satellite (m ²)	2
V_{P}	Orbital velocity of satellites (km/s)	7.605
L_k	The total length of tether (m)	100
k	Elastic coefficient of tether (N/m)	2.46×10^{4}

• $[l_{1o}, v_{1o}, \alpha_{1o}, \dot{\alpha}_{1o}] = [1.0, 0.068, 0, 0]$ $[l_{1t}, v_{1t}, \alpha_{1t}, \dot{\alpha}_{1t}] = [100, 0, -90^{\circ}, 0]$

Case II (the main satellite in front of the sub-satellite)

Comparison of case I and II

Initial errors: $\Delta \dot{l}_0 = 0.01 \text{ m/s}$ $\Delta \alpha_0 = -2.86^\circ$ Control Forces: u_L [-6.8, 3.9] u_α [-3, 0.7]

Initial errors: $\Delta \dot{l}_0 = 0.01 \text{ m/s}$ $\Delta \alpha_0 = -5^\circ$ Control Forces: u_L [-9,4] u_α [-1.2,3.9]

Comparison of case I and II

Strategy	Tension	Thrust	Initial in-plane angle	Deployment time	synthetic criterion	Energy Consumption
Ι	\checkmark	\checkmark	0 deg	5694 s	6.064×10 ⁻¹⁰	7064.9
II		×	160 deg	1900 s	150.37×10^{-10}	6.8497

Note: $\Delta \alpha = \pm 5^{\circ}$, $L = 100 \implies s(L, \alpha) = 3.82 \times 10^{-5}$

5. Conclusion

- Strategy I ensures a stable deployment with a longer operation time.
 Strategy II ensures a quick deployment with a larger synthetic criterion.
- When the initial α is 0 or ±180 deg, the STS requires thrust assistance.
 When the initial α falls within 90~180 deg or -180 ~ -90 deg, the STS only searches for the optimal state.
- The results numerical demonstrate that the controller ensures a stable deployment to the operational configuration under **initial state errors** and **external disturbances**.

Acknowledgments:

- 1. Key Research and Development Program of Shaanxi (No.2023-GHZD-32)
- 2. China Postdoctoral Science Foundation (No. 2023M732862)
- 3. Natural Science Basic Research Program of Shaanxi (2024JC-YBQN-0650)
- 4. Guangdong Basic and Applied Basic Research Foundation (2024A1515012189)

Contact information:

Prof. Aijun Li: <u>liaijun@nwpu.edu.cn</u> Prof. Changqing Wang: <u>wangcq@nwpu.edu.cn</u>