Along－Track Deployment Control of Space Tether System for SAR－GMTI Mission

Linxiao Li^{1} ，Aijun Li^{1} ，Hongshi Lu ${ }^{2,1^{*}}$ ，Changqing Wang ${ }^{1}$

1．School of Automation，Northwestern Polytechnical University，Xi＇an，China
2．Research \＆Development Institute，Northwestern Polytechnical University，Shenzhen，China，

Linxiao Li（PhD student）：linx．li＠mail．nwpu．edu．cn

SAR-GMTI Mission

ESA: Sentinel-1A (2014)
Sentinel-1B (2016)

DLR: TerraSAR-X (2007) TanDEM-X (2010)
CNSA: TianHui-2 (2021)

Radio detection and ranging (Radar) \downarrow
Synthetic Aperture Radar (SAR)

Interferometric SAR (InSAR) mission:

- Digital Elevation models (DEM)
- Ground Moving Target Indications (GMTI)

The current distributed InSAR system suffers from problems:

- presence of periodic variations in the interference baseline
- coupling between different baseline components

Main problems and highlights

1．The horizontal position of STS is far less studied than the traditional vertical position
＞Two optimal trajectory planning strategies are discussed under vertical and non－vertical initial conditions．

2．The GMTI mission has accuracy requirements
－A synthetic criterion of measurement error is proposed to value the deployment accuracy

3．There are initial state errors and external disturbances in the actual situation
$>$ An adaptive tracking controller is designed based on the backstepping method．
2. Dynamic formulation and criterion definition

STS dynamic model

- $M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+g(q)=Q$

$$
\begin{aligned}
& \boldsymbol{M}(\boldsymbol{q})=\left[\begin{array}{cc}
\mathrm{m}_{\mathrm{e}} & 0 \\
0 & \mathrm{~m}_{\mathrm{e}} l^{2}
\end{array}\right] \\
& \boldsymbol{C}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\left[\begin{array}{cc}
0 & -\mathrm{m}_{\mathrm{e}} l(\dot{\alpha}+2 \dot{u}) \\
\mathrm{m}_{\mathrm{e}} l(\dot{\alpha}+2 \dot{u}) & \mathrm{m}_{\mathrm{e}} l \dot{l}
\end{array}\right] \\
& \boldsymbol{g}(\boldsymbol{q})=\left[\begin{array}{c}
-\mathrm{m}_{\mathrm{e}} \dot{u}^{2}-\frac{\mu \mathrm{m}_{\mathrm{e}} l}{R^{3}}\left(3 \cos ^{2} \alpha-1\right)+\frac{k l \delta^{2}}{(1+\delta)^{2}} \\
\frac{3 \mu \mathrm{~m}_{\mathrm{e}} l^{2}}{R^{3}} \sin \alpha \cos \alpha
\end{array}\right] \\
& \left\{\begin{array}{l}
\boldsymbol{q}_{\boldsymbol{b}}=[0,0]^{T} \text { stable } \\
\quad \lambda_{1,2}= \pm j \sqrt{3 \mu / R^{3}}
\end{array}\right. \\
& \boldsymbol{q}_{b}=[\pm \pi / 2,0]^{T} \text { unstable } \\
& \lambda_{1,2}= \pm \sqrt{3 \mu / R^{3}} \\
& \bullet \ddot{\alpha}=-\frac{3 \mu}{R^{3}} \sin \alpha \cos \alpha \rightarrow \dot{\overline{\boldsymbol{q}}}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{3 \mu}{R^{3}} \cos 2 \alpha_{b} & 0
\end{array}\right] \overline{\boldsymbol{q}} \longrightarrow \quad \begin{array}{l}
\lambda^{2}+\frac{3 \mu}{R^{3}} \cos 2 \alpha_{b}=0
\end{array}
\end{aligned}
$$

Synthetic criterion of measurement error

$$
\Delta \varphi=\frac{4 \pi}{\lambda_{b}}\left(y_{1}-y_{2}\right)=\frac{4 \pi}{\lambda_{b}}\left(\frac{B}{V_{s}} v_{r}\right) \rightarrow v_{r}=\frac{V_{s} \lambda_{b} \Delta \varphi}{4 \pi B}
$$

－Consider L, α into $\Delta v_{r}=\frac{V_{s} \lambda_{b} \Delta \varphi}{4 \pi} s(L, \alpha) \longrightarrow s(L, \alpha)=\frac{1}{L}\left(\frac{1}{|\sin \alpha|}-1\right)$
$\Delta \varphi$ ：interference phase difference y_{1}, y_{2} ：ranges from the target to the center of SAR1 and SAR2
V_{s} ：the speed of satellites
v_{r} ：the radial speed of the target relative to SARs
$\lambda_{b}=3 \mathrm{~cm}:$ the wavelength of the SAR in the GMTI mission
B ：the length of the interference baseline
3. Design of control strategy for deployment

Case I: Combined tension and thrust strategy

Note:------>- indicates the forward direction of trajectory

(1) Tether deployment:

- the tether is deployed to the expected length L_{k} under tension control u_{L}
- the in-plane angle swings to the α_{s}
- the in-plane angular velocity $\dot{\alpha}_{s} \neq 0^{\circ} / \mathrm{s}$
(2) The in-plane angle adjustment:
- apply control thrust u_{α} to keep $\dot{\alpha}_{s}$ constant until α_{s} to the range around 90°
- apply control thrust u_{α} to decrease the inplane angular velocity $\dot{\alpha}_{1}$ to $0^{\circ} / \mathrm{s}$

3．Design of control strategy for deployment

Case II：Optimal tension strategy

Time－optimal tension control law：
$u_{L}(t)=\left\{\begin{array}{cc}u_{\text {min }} & 0 \leq t<t_{1} \\ u_{\text {min }}+\left(u_{\text {max }}-u_{\text {min }}\right) \sin ^{2}\left(k\left(t-t_{1}\right)\right) & t_{1} \leq t<t_{2} \\ u_{\text {max }} & t_{2} \leq t<t_{3} \\ u_{\text {max }}\left(1-\sin ^{2}\left(k\left(t-t_{3}\right)\right)\right) & t_{3} \leq t<t_{4} \\ u_{\text {min }} & t_{4} \leq t\end{array}\right.$

Note：－－－－－－－＞－indicates the forward direction of trajectory

$$
\alpha_{2 o} \neq 0^{\circ} \xrightarrow{u_{L}} \alpha_{2 t}=90^{\circ}
$$

this strategy does not introduce any additional thrust，only by controlling the tension from the optimum initial position．

3．Design of control strategy for deployment

Design of the closed－loop tracking controller

Theorem 1．Consider the STS（1）controlled by the adaptive backstepping tracking controller（2）with the adaptive law（3）．Under assumptions 1 and 2，for any initial conditions satisfying $V(0) \leq \sigma$ with a positive constant σ ，the control errors converge to an adjustable neighborhood of the origin．

$$
\begin{align*}
& \ddot{\boldsymbol{q}}=-\boldsymbol{M}(\boldsymbol{q})^{-1} \boldsymbol{C}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}-\boldsymbol{M}(\boldsymbol{q})^{-1} \boldsymbol{g}(\boldsymbol{q})+\boldsymbol{M}(\boldsymbol{q})^{-1} \boldsymbol{Q} \\
& \left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-M\left(x_{1}\right)^{-1} C\left(x_{1}, x_{2}\right) x_{2}-M\left(x_{1}\right)^{-1} g\left(x_{1}\right)+M\left(x_{1}\right)^{-1} Q-d
\end{array}\right. \\
& \text { - } Q=C\left(x_{1}, x_{2}\right) x_{2}+g\left(x_{1}\right)+M\left(x_{1}\right)\left[\dot{x}_{2 d}-e_{1}+K_{2} \delta+\hat{D} \frac{\boldsymbol{\delta}}{\|\boldsymbol{\delta}\|+\varepsilon}\right] \\
& \dot{\hat{D}}=\frac{\boldsymbol{\delta}^{T} \boldsymbol{\delta}}{\|\boldsymbol{\delta}\|+\varepsilon}-\hat{D} \tag{3}\\
& \boldsymbol{e}_{1}=x_{1 d}-x_{1} \quad x_{2 d}=\dot{x}_{1 d}+K_{1} e_{1} \quad \dot{\delta}=e_{1}-K_{2} \delta
\end{align*}
$$

$$
\begin{aligned}
& V=\frac{1}{2} \boldsymbol{e}_{I}^{T} \boldsymbol{e}_{I}+\frac{1}{2} \boldsymbol{\delta}^{T} \boldsymbol{\delta}+\frac{1}{2} \tilde{D}^{2} \\
& \dot{V} \leq-\gamma V+D_{d} \\
& \text { where } D_{d}=1 / 2 D^{2}+\varepsilon D \text { is bounded } \\
& \text { Suppose } \quad \gamma>D_{d} / \sigma \\
& \qquad \dot{V}<0 \text { when } V=\sigma \\
& \qquad V(t) \leq \sigma \text { if } V(0) \leq \sigma
\end{aligned}
$$

Therefore，all states in the controlled system are semi－globally uniformly ultimately bound．

Case I（the sub－satellite in front of the main satellite）

Parameter	Description（Unit）	Value
a	Orbital semimajor axis（km）	6892.6
i	Orbital inclination in degrees（ ${ }^{\circ}$ ）	97.4
e	Orbital eccentricity（／）	0.0011
Φ	The argument of perigee in degrees（ ${ }^{\circ}$ ）	90
Ω	The right ascension of the ascending node in degrees（ ${ }^{\circ}$ ）	0
u_{0}	The initial true anomaly in degrees（ ${ }^{\circ}$ ）	0
Parameter	Description（Unit）	Value
$\mathrm{m}_{\text {A }}$	Mass of the main satellite（kg）	400
$\mathrm{m}_{\text {B }}$	Mass of the sub－satellite（kg）	350
m_{t}	Mass of tether（kg）	0.486
$\mathrm{S}_{\text {A }}$	The frontal area of the main satellite（ m^{2} ）	2
$\mathrm{S}_{\text {B }}$	The frontal area of the sub－satellite（ m^{2} ）	2
V_{P}	Orbital velocity of satellites（ km / s ）	7.605
L_{k}	The total length of tether（m）	100
k	Elastic coefficient of tether（N／m）	2.46×10^{4}

－$\left[l_{1 o}, v_{1 o}, \alpha_{1 o}, \dot{\alpha}_{1 o}\right]=[1.0,0.068,0,0]$
$\left[l_{1 t}, v_{1 t}, \alpha_{1 t}, \dot{\alpha}_{1 t}\right]=\left[100,0,-90^{\circ}, 0\right]$

Case II（the main satellite in front of the sub－satellite）

It can be regarded as the small initial state error in the subsequent station－keeping phase

Comparison of case I and II

Initial errors：$\Delta \dot{i}_{0}=0.01 \mathrm{~m} / \mathrm{s} \quad \Delta \alpha_{0}=-2.86^{\circ}$
Control Forces：$\quad u_{L}[-6.8,3.9] \quad u_{\alpha}[-3,0.7]$

Initial errors：$\quad \Delta \dot{i}_{0}=0.01 \mathrm{~m} / \mathrm{s} \quad \Delta \alpha_{0}=-5^{\circ}$
Control Forces：$\quad u_{L}[-9,4] \quad u_{\alpha}[-1.2,3.9]$

Comparison of case I and II

Strategy	Tension	Thrust	Initial in－plane angle	Deployment time	synthetic criterion	Energy Consumption
I	$\sqrt{ }$	$\sqrt{2}$	0 deg	5694 s	6.064×10^{-10}	7064.9
II	$\sqrt{ }$	\times	160 deg	1900 s	150.37×10^{-10}	6.8497

Note：$\Delta \alpha= \pm 5^{\circ}, L=100 \longrightarrow s(L, \alpha)=3.82 \times 10^{-5}$

5．Conclusion

－Strategy I ensures a stable deployment with a longer operation time．
Strategy II ensures a quick deployment with a larger synthetic criterion．
－When the initial α is $\mathbf{0}$ or $\pm \mathbf{1 8 0} \mathbf{d e g}$ ，the STS requires thrust assistance．
When the initial α falls within 90～180 deg or－180～－90 deg，the STS only searches for the optimal state．
－The results numerical demonstrate that the controller ensures a stable deployment to the operational configuration under initial state errors and external disturbances．

Acknowledgments：

1．Key Research and Development Program of Shaanxi（No．2023－GHZD－32）
2．China Postdoctoral Science Foundation（No．2023M732862）
3．Natural Science Basic Research Program of Shaanxi（2024JC－YBQN－0650）
4．Guangdong Basic and Applied Basic Research Foundation（2024A1515012189）

Contact information：

Prof．Aijun Li：liaijun＠nwpu．edu．cn
Prof．Changqing Wang：wangcq＠nwpu．edu．cn

