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1. Introduction

SAR-GMTI Mission
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DLR: TerraSAR-X (2007)

TanDEM-X (2010)

CNSA: TianHui-2 (2021) 

NASA: SRTM (2000)

ESA: Sentinel-1A (2014)

Sentinel-1B (2016) 

The current distributed InSAR system suffers 

from problems:

• presence of periodic variations in the 

interference baseline

• coupling between different baseline 

components

Synthetic Aperture Radar (SAR)

Interferometric SAR (InSAR) mission:

• Digital Elevation models (DEM)

• Ground Moving Target Indications 

(GMTI)

Radio detection and ranging (Radar)



1. Introduction

Main problems and highlights
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1.  The horizontal position of STS is far less studied than the 

traditional vertical position

➢ Two optimal trajectory planning strategies are discussed 

under vertical and non-vertical initial conditions.

2.  The GMTI mission has accuracy requirements

➢ A synthetic criterion of measurement error is proposed to 

value the deployment accuracy

3.  There are initial state errors and external disturbances in 

the actual situation

➢ An adaptive tracking controller is designed based on the 

backstepping method.



2. Dynamic formulation and criterion definition

STS dynamic model
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2. Dynamic formulation and criterion definition

Synthetic criterion of measurement error
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 : interference phase difference

1 2,y y : ranges from the target to 

the center of SAR1 and SAR2

: the speed of satellitessV

: the radial speed of the target 

relative to SARs

 
rv

 3 cmb = : the wavelength of the 

SAR in the GMTI mission

B : the length of the interference 

baseline



3. Design of control strategy for deployment

Case I: Combined tension and thrust strategy 
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① Tether deployment：

• the tether is deployed to the expected length        

under tension control  

• the in-plane angle swings to the

• the in-plane angular velocity 
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② The in-plane angle adjustment:

• apply control thrust          to keep         constant 

until        to the range around       

• apply control thrust          to decrease the in-

plane angular velocity        to  0

 u
 

s

 
s  90

 u

1 /s

Lu



3. Design of control strategy for deployment

Case II: Optimal tension strategy
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Time-optimal tension control law:

this strategy does not introduce any additional thrust, only 

by controlling the tension from the optimum initial position.

Selection of optimum initial position : 

• Coriolis force effect should be considered

• The terminate in-plane angle                   and 

angular velocity                     should be 

guaranteed.
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3. Design of control strategy for deployment

Design of the closed-loop tracking controller
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Theorem 1. Consider the STS (1) controlled by the adaptive backstepping tracking controller (2) with the adaptive 

law (3). Under assumptions 1 and 2, for any initial conditions satisfying                 with a positive constant    , the 

control errors converge to an adjustable neighborhood of the origin.
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Therefore, all states in the controlled 

system are semi-globally uniformly 

ultimately bound.
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4. Numerical validation

Case I (the sub-satellite in front of the main satellite)
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Parameter Description (Unit) Value 

a  Orbital semimajor axis (km) 6892.6 

i  Orbital inclination in degrees ( ) 97.4 

e  Orbital eccentricity (/) 0.0011 

  The argument of perigee in degrees ( ) 90 

  The right ascension of the ascending node in degrees ( ) 0 

0u  The initial true anomaly in degrees ( ) 0 

 

Parameter Description (Unit) Value 

Am  Mass of the main satellite (kg) 400 

Bm  Mass of the sub-satellite (kg) 350 

tm  Mass of tether (kg) 0.486 

AS  The frontal area of the main satellite (m2) 2 

BS  The frontal area of the sub-satellite (m2) 2 

PV  Orbital velocity of satellites (km/s) 7.605 

kL  The total length of tether (m) 100 

k  Elastic coefficient of tether (N/m) 2.46×104 

 

1 1 1 1[ , , , ] [1.0,0.068,0,0]o o o ol v   =

1 1 1 1[ , , , ] [100,0, 90 ,0]t t t tl v   = −

⚫

1454s 2960s

61−

83−

0.015 /s−



4. Numerical validation

Case II (the main satellite in front of the sub-satellite)
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2 2 2 2[ , , , ] [1.0,0.068,160 ,0]o o o ol v   =⚫

2 2 2 2[ , , , ] [100,0,90 , 0.021 s]t t t tl v   = −

 1461s

It can be regarded as the small initial state 

error in the subsequent station-keeping phase



4. Numerical validation

Comparison of case I and II
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0 0.01m sl =  
0 2.86 = −Initial errors: Initial errors:

Control Forces:

0 0.01m sl = 0 5 = −

[ 6.8,3.9]−  [ 3,0.7]− 
Lu  u Control Forces: [ 9,4]− [ 1.2,3.9]− 

Lu  u



4. Numerical validation

Comparison of case I and II
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Strategy Tension Thrust Initial in-plane angle Deployment time synthetic criterion Energy Consumption

I √ √ 0 deg 5694 s 6.064×10-10 7064.9

II √ × 160 deg 1900 s 150.37×10-10 6.8497

5 100L =  =，
5( , ) 3.82 10s L  −= Note:



5. Conclusion
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◆ Strategy I ensures a stable deployment with a longer operation time.   

Strategy II ensures a quick deployment with a larger synthetic criterion.

Strategy I: deploying to position of -90 deg

Strategy II: deploying to position of 90 deg

◆ The results numerical demonstrate that the controller ensures a stable deployment to the operational  

configuration under initial state errors and external disturbances.

◆ When the initial is 0 or ±180 deg, the STS requires thrust assistance.

When the initial      falls within 90~180 deg or -180 ~ -90 deg, the STS only searches for the optimal state.







Acknowledgments:

1. Key Research and Development Program of Shaanxi (No.2023-GHZD-32)

2. China Postdoctoral Science Foundation (No. 2023M732862)

3. Natural Science Basic Research Program of Shaanxi (2024JC-YBQN-0650)

4. Guangdong Basic and Applied Basic Research Foundation (2024A1515012189)

Contact information: 

Prof. Aijun Li: liaijun@nwpu.edu.cn

Prof. Changqing Wang:  wangcq@nwpu.edu.cn

mailto:liaijun@nwpu.edu.cn
mailto:wangcq@nwpu.edu.cn

