

Martin Tajmar, Georg Hentsch, Elisabeth Berka, Jan-Philipp Wulfkühler Institute of Aerospace Engineering, TUD Dresden University of Technology

Overview of Electron Emitter Technology Development at TU Dresden for the Application in Electrodynamic Tether Systems

7th International Conference on Tethers in Space June 2-5, 2024

Acknowledgements

Fraunhofer IKTS: Katja Wätzig, Sindy Mosch, Axel Rost

Fraunhofer IWS: Frank Kaulfuß, Volker Weihnacht

This research was funded by the European Space Agency, ESA contract number 4000140009/22/NL/GLC/ov, and by the European Commission's H2020-FET-OPEN Research and Innovation Program through the E.T.PACK Project under Grant 828902, and the European Commission's Horizon Europe EIC Transition Program through the E.T.PACK-F Project under Grant 101058166.

Euro Innov Co

European Innovation Council

Funded by the European Union

Agenda

- Timeline of ~10 Years of Electron Emitter Development at TU Dresden
- Three Electron Emitter Technologies:
 - Compact Heaterless Cathode
 - Radial CNT Field Emitter
 - Diamond-like Carbon (DLC) Emission Surfaces

- Full emitter designs

→ Material Analysis

Development Timeline

Compact Heaterless Hollow Cathode

- Hollow Cathode based on C12A7 electride (C12A7:e-) emitter
- Low work function allows heaterless ignition by high voltage pulse
- Optimized for nano and microsats

Breadboard model (cross-section view)

Engineering model

Compact Heaterless Hollow Cathode

- Hollow Cathode based on planar C12A7:e- emitter \rightarrow performance achieved through joint development with Fraunhofer IKTS
- Emission tests in triode configuration

Property	Value
Discharge current range	0.3 – 2 A
Discharge potential	< 30 V (20 sccm Kr, 2 A) < 45 V (4 sccm Kr)
Low Power Consumption	< 25 W (0.3 A, 4 sccm)
Low mass flow rate	< 4 sccm (Kr)
Total operational time	950 h
Ignition Cycles	500

The Radial Field Emission Array Concept

- Novel design approach
- Additional field enhancement for large gaps (but lower emission area)
- Optimal configuration for EDT operation

Field enhancement factor of a 20 mm diameter cylindrical condenser compared to a planar one

1st Gen. Radial CNT Cathodes Prototypes

- Freely mounted and wound CNT yarns
- Three different electrode configurations
- Large gap best, but high risk of failure
 - > Large area cathodes more feasible

2nd Gen. Upscaled Radial CNT Cathodes

- Upscaled large area, small gap configuration built
- Very high efficiencies, medium transmission rates
- Tested up to 30 mA, 100 mA expected

Yarn Ø [µm]	200
Pitch h [mm]	1.0
Windings	40
A _{em} [cm ²]	9.5
Gap [µm]	345

Diamond Like Carbon (DLC) Cathode Materials

- Layer activation at higher voltage necessary
- Best performance with:
 - High ta-C content
 - High electrical resistance
- Large area arrays possible
 - Raster activation by field emission needle

Emission spot of the ta-C sample

Summary and Outlook

Main Facts:

- 0.3 to 2 A
- C12A7:e- emitter
- Heaterless ignition

IOD: Q3/4 2025

- 10 to 30 mA
- CNT Emitter

Increase current

ATOX resistance tests

- Up to 200 mA/cm²
- DLC emitter
- Activation necessary
- Build arrays
 - Lifetime tests

Thank you very much for your attention!