Partner

TETHERED ARTIFICIAL GRAVITY ASSISTS FOR CAPTURE ABOUT BINARY ASTEROIDS IN THE CIRCULAR RESTRICTED THREE-BODY PROBLEM

Nicole Pallotta ${ }^{1}$ and Michael C.F. Bazzocchi ${ }^{1,2}$
${ }^{1}$ Astronautics and Robotics Laboratory,
Department of Mechanical \& Aerospace Engineering, Clarkson University
${ }^{2}$ Astronautics and Robotics Laboratory,
Department of Earth \& Space Science \& Engineering, York University

Credit: NASA/Johns Hopkins APL [1]

5 Conclusion \& Future Work

INTRODUCTION

Tethered artificial gravity assist: a proposed alternative to traditional methods of propulsion that changes the orbital path of a spacecraft using a tether

Objective: Develop an approach to optimize tethered artificial gravity assist maneuvers in binary asteroid systems using the circular restricted three-body problem (CR3BP)

Credit: Arecibo/GBO/NSF/NASA/JPL-Caltech [2]

PROBLEM FORMULATION

Ratio of mass between secondary asteroid and total system [3]:

$$
\mu=\frac{m_{2}}{m_{1}+m_{2}}
$$

Normalized position of asteroids in synodic frame [3]:

$$
\begin{aligned}
& \text { Additional Parameters: } \\
& m_{1}=\text { real mass of primary } \\
& m_{2}=\text { real mass of secondary } \\
& R_{1}=\text { real radius of primary } \\
& R_{2}=\text { real radius of secondary } \\
& a_{s}=\text { real semi-major axis of secondary }
\end{aligned}
$$

$$
\vec{r}_{1}=\left[\begin{array}{c}
-\mu \\
0
\end{array}\right], \quad \vec{r}_{2}=\left[\begin{array}{c}
1-\mu \\
0
\end{array}\right]
$$

Normalized radii of asteroids:

$$
R_{p}=\frac{R_{1}(1-\mu)}{a_{s}}, \quad R_{s}=\frac{R_{2}(1-\mu)}{a_{s}}
$$

TETHER DYNAMICS

Tether Attachment [4]:

$$
\begin{gathered}
\overrightarrow{\mathbf{r}}_{i}=\left[\begin{array}{l}
r_{x_{i}} \\
r_{y_{i}}
\end{array}\right]=\left[\begin{array}{c}
l \cos (\psi+\delta)+R_{s} \cos \psi+(1-\mu) \\
l \sin (\psi+\delta)+R_{s} \sin \psi
\end{array}\right] \\
\vec{v}_{i}=\left[\begin{array}{l}
v_{x_{i}} \\
v_{y_{i}}
\end{array}\right]=\left[\begin{array}{c}
v_{\infty} \sin (\psi+\beta) \\
-v_{\infty} \cos (\psi+\beta)
\end{array}\right]
\end{gathered}
$$

Tether Detachment [4]:

$$
\begin{gathered}
\overrightarrow{\mathbf{r}}_{i}=\left[\begin{array}{l}
r_{x_{i}} \\
r_{y_{i}}
\end{array}\right]=\left[\begin{array}{c}
l \cos (\psi-\delta)+R_{s} \cos \psi+(1-\mu) \\
l \sin (\psi-\delta)+R_{S} \sin \psi
\end{array}\right] \\
\vec{v}_{i}=\left[\begin{array}{l}
v_{x_{i}} \\
v_{y_{i}}
\end{array}\right]=\left[\begin{array}{c}
v_{\infty} \sin (\psi-\beta) \\
-v_{\infty} \cos (\psi-\beta)
\end{array}\right]
\end{gathered}
$$

CR3BP DYNAMICS

Jacobi Constant: The only conserved value in CR3BP dynamics

Jacobi Constant [3]:

$$
C_{j}=(1-\mu) r_{p}^{2}+\mu r_{s}^{2}+\frac{2(1-\mu)}{r_{p}}+\frac{\mu}{r_{s}}-v_{\infty}^{2}
$$

Distance between spacecraft and each asteroid [3]:

$$
\begin{gathered}
r_{p}^{2}=\left(r_{x}+\mu\right)^{2}+r_{y}^{2} \\
r_{p}^{2}=\left(r_{x}-1+\mu\right)^{2}+r_{y}^{2}
\end{gathered}
$$

OPTIMIZATION

Genetic algorithm (GA): evolutionary algorithm for complex optimization problems with high modality

- Select a planar periodic capture orbit as a desired final orbit to insert the spacecraft into (described by $\overrightarrow{\mathbf{r}}_{d}$ and $\overrightarrow{\mathbf{v}}_{d}$)
- Design variables: $\psi, \delta, l, \overrightarrow{\mathbf{r}}_{d}$ and $\overrightarrow{\mathbf{v}}_{d}$

Objective Function:

$$
J=-\omega_{1}\left|C_{j_{d}}-C_{j_{i}}\right|+\omega_{2}\left\|\overrightarrow{\mathbf{r}}_{d}-\overrightarrow{\mathbf{r}}_{f}\right\|+\omega_{3}\left\|\overrightarrow{\mathbf{v}}_{d}-\overrightarrow{\mathbf{v}}_{f}\right\|
$$

$$
\left\|\vec{r}_{i_{t r a j}}-\vec{r}_{2}\right\|-R_{p}>0
$$

SIMULATION PARAMETERS

Criteria for selecting systems:

1. Enough data known to accurately simulate systems
2. Low orbital eccentricity observed in secondary
3. Categorize systems into different mass ratio ranges (i.e., small μ, medium μ, and large μ)
4. Largest distance between surface of primary to L_{1} stability point

Observed Characteristics [5-9]			
Parameter	2002 CE26	Dionysus \& S/1997	2000 DP107 \& S/2000
μ	0.0800	0.1667	0.2908
m_{T}	$1.95 \times 10^{13} \mathrm{~kg}$	$2.48 \times 10^{12} \mathrm{~kg}$	$4.6 \times 10^{11} \mathrm{~kg}$
d_{P}	3.46 km	1.43 km	0.8 km
e_{S}	0.00	0.07	0.01
a_{s}	4.7 km	3.4 km	2.62 km
d_{s}	0.3 km	0.29 km	0.3 km

SIMULATION SCENARIOS

A S T R D A B

RESULTS

Optimized Tethered Maneuvers			
Design Variables	2002 CE26	Dionysus \& S/1997	$2000 \mathrm{DP} 107 \& \mathrm{~S} / 2000$
ψ	210.12°	206.11°	206.64°
δ	31.73°	26.62°	25.51°
l	$2.67 \times 10^{3} \mathrm{~m}$	$2.49 \times 10^{3} \mathrm{~m}$	$2.46 \times 10^{3} \mathrm{~m}$

RESULTS

- Minimal difference found between desired orbit and final orbit in 2002 CE26 and Dionysus \& S/1997
- Larger distance between position vectors for 2000 DP107 \& S/2000 caused a more circular final orbit shape

Difference between desired orbit and final orbit					
Parameter	2002 CE26	Dionysus \& S/1997	2000 DP107 \& S/2000		
$\left\\|\overrightarrow{\mathbf{r}}_{f}-\overrightarrow{\mathbf{r}}_{d}\right\\|$	0.1275 m	5.9600 m	259.2802 m		
$\left\\|\overrightarrow{\mathbf{v}}_{f}-\overrightarrow{\mathbf{v}}_{d}\right\\|$	$0.0120 \mathrm{~m} / \mathrm{s}$	$0.0370 \mathrm{~m} / \mathrm{s}$	$0.0191 \mathrm{~m} / \mathrm{s}$		
$\left\|C_{j_{f}}-C_{j_{d}}\right\|$	0.0022	0.0144	0.6775		

DISCUSSION

- GA successfully optimized tethered artificial gravity assists in each binary system
- Initial trajectory orbited in same direction as final desired orbit and rotation of system
- Tether at detachment point was optimized to be nearly aligned with x-axis
- Positive trend observed between μ and ΔC_{j}

Change in Jacobi Constant			
Parameter	2002 CE26	Dionysus and S/1997	2000 DP107 and S/2000
μ	0.0800	0.1667	0.2908
$C_{j_{i}}$	2.0166	1.6960	1.8426
$C_{j_{f}}$	3.4581	3.8112	4.3924
ΔC_{j}	1.4415	2.1152	2.5498

CONCLUSION \& FUTURE WORK

- Successfully optimized tethered artificial gravity assist maneuvers in three binary asteroid systems using CR3BP dynamics
- Future work:
- Incorporate external perturbations into model
- Utilize varying-length tether in maneuver

Credit: NASA/Goddard/SwRI/ASU [10]
[1] T. Talbert, "DART's Final Images Prior to Impact," NASA, 27 September 2022. [Online]. Available: https://www.nasa.gov/solar-system/darts-final-images-prior-to-impact/. [Accessed 31 May 2024].
[2] JPL, "Bi-static Radar Images of the Binary Asteroid 2017 YE5," NASA, 12 July 2018. [Online]. Available: https://www.jpl.nasa.gov/images/pia22559-bi-static-radar-images-of-the-binary-asteroid-2017-ye5. [Accessed 31 May 2024].
[3] V. Szebehely, Theory of Orbits: The Restricted Problem of Three Bodies, New York: Academic Press, 1967.
[4] A. F. Prado, "Using tethered gravity-assisted maneuvers for planetary capture," Journal of Guidance, Control, and Dynamics, vol. 38, no. 9, pp. 1852-1856, 2015.
[5] JPL, "Small-Body Database," NASA, [Online]. Available: https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html\#/. [Accessed 2 September 2022].
[6] M. K. Shepard, J.-L. Margot, C. Magri, M. C. Nolan, J. Schlieder, B. Estes, S. J. Bus, E. L. Volquardsen, A. S. Rivkin and L. A. Benner, "Radar and infrared observations of binary near-Earth Asteroid 2002 CE26," Icarus, vol. 184, no. 1, pp. 198-210, 2006.
[7] P. Pravec, P. Scheirich, P. Kusnirak, L. Sarounova, S. Mottola, G. Hahn, P. Brown, G. Esquardo, N. Kaiser and Z. Krzeminski, "Photometric survey of binary near-Earth asteroids," Icarus, vol. 181, no. 1, pp. 63-93, 2006.
[8] J.-L. Margot, M. Nolan, L. Benner, S. Ostro, R. Jurgens and D. Campbell, "Binary asteroids in the near-Earth object population," Science, vol. 296, no. 5572, pp. 1445-1448, 2002.
[9] P. Pravec and A. W. Harris, "Binary asteroid population: 1. Angular momentum content," Icarus, vol. 190, no. 1, pp. 250-259, 2007.
[10] NASA, "NASA's Lucy Spacecraft Discovers 2nd Asteroid During Dinkinesh Flyby," NASA, 2 November 2023. [Online]. Available: https://Www.nasa.gov/image-article/nasas-lucy-spacecraft-discovers-2nd-asteroid-during-dinkinesh-flyby/. [Accessed 31 May 2024].
[11] P. A. Penzo and H. L. Mayer, "Tethers and asteroids for artificial gravity assist in the solar system," Journal of Spacecraft and Rockets, vol. 23, no. 1, pp. 79-82, 1986.
[12] M. Ono, M. Quadrelli and G. Lantoine, "The hitchhiker's guide to the outer solar system," in A/AA SPACE 2015 Conference and Exposition, 2015. [13] A. Wittig and D. Izzo, "Spiderman Spacecraft: Tethered asteroid hopping in the main belt," in ESA, 2016.

Any Questions?

Nicole Pallotta
pallotna@clarkson.edu

Michael C.F. Bazzocchi
 mbazz@yorku.ca

Disclaimer Statement:

The material contained in this document is based upon work supported by a National Aeronautics and Space
Administration (NASA) cooperative agreement. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of NASA.

Partner
This work was supported through a NASA Cooperative Agreement awarded to the New York Space Grant Consortium.

A S T R D A B

BACKUP SLIDES

TETHER DYNAMICS

Tether Attachment [4]:

$$
\begin{gathered}
\overrightarrow{\mathbf{r}}_{i}=\left[\begin{array}{l}
r_{x_{x}} \\
r_{y_{i}}
\end{array}\right]=\left[\begin{array}{c}
l \cos (\psi+\delta)+R_{s} \cos \psi+(1-\mu) \\
l \sin (\psi+\delta)+R_{s} \sin \psi
\end{array}\right] \\
\vec{v}_{i}=\left[\begin{array}{l}
v_{x_{i}} \\
v_{y_{i}}
\end{array}\right]=\left[\begin{array}{c}
v_{\infty} \sin (\psi+\beta) \\
-v_{\infty} \cos (\psi+\beta)
\end{array}\right]
\end{gathered}
$$

Tether Detachment [4]:

$$
\begin{gathered}
\overrightarrow{\mathbf{r}}_{i}=\left[\begin{array}{l}
r_{x_{i}} \\
r_{y_{i}}
\end{array}\right]=\left[\begin{array}{c}
l \cos (\psi-\delta)+R_{s} \cos \psi+(1-\mu) \\
l \sin (\psi-\delta)+R_{s} \sin \psi
\end{array}\right] \\
\vec{v}_{i}=\left[\begin{array}{l}
v_{x_{i}} \\
v_{y_{i}}
\end{array}\right]=\left[\begin{array}{c}
v_{\infty} \sin (\psi-\beta) \\
-v_{\infty} \cos (\psi-\beta)
\end{array}\right]
\end{gathered}
$$

2002 CE26

Design Variables	Values	
ψ	210.12°	
δ	$31.73{ }^{\circ}$	
	Dimensionless	Dimensional
l	0.5221	$2.67 \times 10^{3} \mathrm{~m}$
$\overrightarrow{\mathbf{r}}_{d}$	$\left[0.3730,-3.98 \times 10^{-5}\right]^{T}$	$\left[1.91 \times 10^{\wedge} 3,-0.2033\right]^{\mathrm{T}} \mathrm{m}$
$\overrightarrow{\mathbf{v}}_{d}$	$[-0.0211,1.0540]^{\mathrm{T}}$	$[-0.0121,0.6020]^{\mathrm{T}} \mathrm{m} / \mathrm{s}$
Output Parameters	Values	
$C_{j_{i}}$	2.0166	
$C_{j_{f}}$	3.4581	
ΔC_{j}	1.4415	
	Dimensionless	Dimensional
$\overrightarrow{\mathbf{r}}_{i}$	[0.6482, -0.4751] ${ }^{\text {T }}$	$\left[3.31 \times 10^{3},-2.43 \times 10^{3}\right]^{\mathrm{T}} \mathrm{m}$
$\overrightarrow{\mathbf{v}}_{i}$	$[-0.9151,0.5234]^{\mathrm{T}}$	$[-0.5227,0.2990]^{\mathrm{T}} \mathrm{m} / \mathrm{s}$
$\overrightarrow{\mathbf{r}}_{f}$	$\left[0.3726,-6.48 \times 10^{-5}\right]^{\mathrm{T}}$	$\left[1.91 \times 10^{3},-0.3308\right]^{\mathrm{T}} \mathrm{m}$
$\overrightarrow{\mathbf{v}}_{f}$	$\left[-1.25 \times 10^{-4}, 1.0542\right]^{\mathrm{T}}$	$\left[-7.12 \times 10^{-5}, 0.6021\right]^{\mathrm{T}} \mathrm{m} / \mathrm{s}$

Optimized tethered maneuver in 2002 CE26

DIONYSUS \& S/1997

Optimized tethered maneuver in 2002 CE26		
Design Variables	Values	
ψ	206.11°	
δ	26.62°	
	Dimensionless	Dimensional
l	0.6099	$2.49 \times 10^{3} \mathrm{~m}$
$\overrightarrow{\mathbf{r}}_{d}$	$\left[0.1927,-9.36 \times 10^{-3}\right]^{\mathrm{T}}$	$[786.33,-38.20]^{\mathrm{T}} \mathrm{m}$
$\overrightarrow{\mathbf{v}}_{d}$	$[-0.1635,1.2280]^{\mathrm{T}}$	$[-0.0420,0.3152]^{\mathrm{T}} \mathrm{m} / \mathrm{s}$
Output Parameters	Values	
C_{j}	1.6960	
$C_{j_{f}}$	3.8112	
ΔC_{j}	2.1152	
	Dimensionless	Dimensional
$\overrightarrow{\mathbf{r}}_{i}$	[0.4320, -0.5010] ${ }^{\text {T }}$	$\left[1.76 \times 10^{3},-2.04 \times 10^{3}\right]^{\mathrm{T}} \mathrm{m}$
$\overrightarrow{\mathbf{v}}_{i}$	$[-0.9669,0.7745]^{\mathrm{T}}$	$[-0.2482,0.1988]^{\mathrm{T}} \mathrm{m} / \mathrm{s}$
$\overrightarrow{\mathbf{r}}_{f}$	$[0.1915,-0.0102]^{\mathrm{T}}$	$[781.47,-41.65]^{\mathrm{T}} \mathrm{m}$
$\overrightarrow{\mathbf{v}}_{f}$	$[-0.0197,1.2387]^{\mathrm{T}}$	$\left[-5.06 \times 10^{-3}, 0.3180\right]^{\mathrm{T}} \mathrm{m} / \mathrm{s}$

2000 D107 \& S/2000

Optimized tethered maneuver in 2002 CE26

Design Variables	Values	
ψ	$206.64{ }^{\circ}$	
δ	$25.51{ }^{\circ}$	
	Dimensionless	Dimensional
l	0.6662	$2.46 \times 10^{3} \mathrm{~m}$
$\overrightarrow{\mathbf{r}}_{d}$	$\left[0.0671,4.74 \times 10^{-3}\right]^{T}$	$[247.70,17.50]^{\mathrm{T}} \mathrm{m}$
$\overrightarrow{\mathbf{v}}_{d}$	$[-0.1765,1.1621]^{\mathrm{T}}$	$[-0.0270,0.1776]^{\mathrm{T}} \mathrm{m} / \mathrm{s}$
Output	Values	
$C_{j_{i}}$	1.8426	
$C_{j_{f}}$	4.3924	
ΔC_{j}	2.5498	
	Dimensionless	Dimensional
$\overrightarrow{\mathbf{r}}_{i}$	[0.2641, -0.5442] ${ }^{\text {T }}$	$\left[975.61,-2.01 \times 10^{3}\right]^{\mathrm{T}} \mathrm{m}$
$\overrightarrow{\mathbf{v}}_{i}$	$[-0.9099,0.7442]^{\mathrm{T}}$	$[-0.1390,0.1137]^{\mathrm{T}} \mathrm{m} / \mathrm{s}$
$\overrightarrow{\mathbf{r}}_{f}$	$\left[6.84 \times 10^{-3},-0.0313\right]^{\mathrm{T}}$	$[25.28,-115.75]^{\mathrm{T}} \mathrm{m}$
$\overrightarrow{\mathbf{v}}_{f}$	$[-0.0524,1.1743]^{\mathrm{T}}$	$\left[-8.00 \times 10^{-3}, 0.1794\right]^{\mathrm{T}} \mathrm{m} / \mathrm{s}$

