

 7^{th} International Conference on Tethers in Space

Iterative Learning Control for Multiple Deployment and Retrieval of Tethered Satellite System with Input Saturation

Reporter : Shouxu Chen

Nanjing University of Aeronautics and Astronautics State Key Laboratory of Mechanics and Control for Aerospace Structure

2 System description

3 Controller design

4 Numerical Simulation

5 Conclusion

Nanjing University of Aeronautics and Astronautics Tis2024

Tethered satellite system (TSS) refers to two or more end bodies connected by flexible tether flying in space.

- space debris capture and removal
- orbit transfer
- space elevator projects

With the advancement of TSS, these endeavors will most likely require systems capable of executing **multiple deployment and retrieval**.

Three dynamic phases:
> deployment
> station-keeping
> retrieval

- Coriolis acceleration.
- External disturbances and uncertainties.

How to achieve stable tether deployment and retrieval?

Iterative learning control (ILC)

- simple structure
- model-free
- learning from the past control experience

Key contributions:

- 1) Based on the studies on ILC for systems with input saturation, an ILC-based saturated controller is developed for repetitive deployment and retrieval of a TSS, which is a underactuated system.
- 2) Compared with the past analytical control schemes for deployment or retrieval, the proposed controller can well deal with the problem of tension disturbances utilizing past control experiences.

2 System description

3 Controller design

4 Numerical Simulation

5 Conclusion

Nanjing University of Aeronautics and Astronautics Tis2024

2. System description

The dynamic equations:

$$l'' - l[\theta'^{2} + 2\theta'\omega_{o} + 3\omega_{o}^{2}\cos^{2}\theta] = -\frac{F_{T} + d}{m}$$

$$d - \text{disturbance}$$

$$\theta'' + 2(\frac{l'}{l})(\omega_{o} + \theta') + \frac{3}{2}\omega_{o}^{2}\sin 2\theta = 0$$

$$\xi = l / l_{c}, \ u = F_{T} / (m\omega_{o}^{2}l_{c}), \ d(...) / dt = \omega_{o}d(...) / d\tau$$

The dimensionless form: $\ddot{\xi} - \xi [(1 + \dot{\theta})^2 - 1 + 3\cos^2 \theta] = -u + \tilde{d}$ $\ddot{\theta} + 2(\frac{\dot{\xi}}{\xi})(1 + \dot{\theta}) + 3\sin\theta\cos\theta = 0$

 $\xi_{\min} > 0$ to avoid the singular problem

The control input should be satisfied the positive tension constraint

$$u \in (0, u_{\max})$$

$$\tilde{u} = \frac{u_{\max}}{2} - u$$

a symmetric domain

$$\tilde{u} \in (-\frac{1}{2}u_{\max}, \frac{1}{2}u_{\max})$$

which is equivalent to a saturation requirement.

2 System description

3 Controller design

4 Numerical Simulation

5 Conclusion

Nanjing University of Aeronautics and Astronautics Tis2024

ILC-based tension control law: $\tilde{u}_j(\tau) = sat(\overline{\psi}(\xi_d(\tau)) - k_p(\overline{\xi}_j(\tau) + \zeta\overline{\xi}_{j-1}(\tau)) - k_v(\dot{\xi}_j(\tau) + \zeta\dot{\xi}_{j-1}(\tau)))$

$$\tilde{u}_{j}(\tau) = g_{1,j} + g_{2,j} + \overline{\psi}(\xi_{d}(\tau)) = \begin{cases} g_{1,j} & \text{the damping force} \\ g_{2,j} & \text{the restoring force} \\ \overline{\psi}(\xi_{d}(\tau)) & \text{the constant force} \end{cases} \begin{cases} g_{1,j} = sat(\overline{\psi}(\xi_{d}(\tau)) - k_{p}(\overline{\xi}_{j}(\tau) + \zeta\overline{\xi}_{j-1}(\tau))) - k_{v}(\xi_{j}(\tau) + \zeta\overline{\xi}_{j-1}(\tau))) \\ -sat(\overline{\psi}(\xi_{d}(\tau)) - k_{p}(\overline{\xi}_{j}(\tau) + \zeta\overline{\xi}_{j-1}(\tau))) \\ g_{2,j} = sat(\overline{\psi}(\xi_{d}(\tau)) - k_{p}(\overline{\xi}_{j}(\tau) + \zeta\overline{\xi}_{j-1}(\tau))) \\ -sat(\overline{\psi}(\xi_{d}(\tau)) - k_{p}(\overline{\xi}_{j}(\tau) + \zeta\overline{\xi}_{j-1}(\tau))) \end{cases}$$

$$sat(\lambda) = \begin{cases} -L + (M - L) \tanh\left(\frac{\lambda + L}{M - L}\right) & \lambda < -L \\ \lambda & -L \le \lambda \le L \\ L + (M - L) \tanh\left(\frac{\lambda - L}{M - L}\right) & \lambda > L \end{cases}$$

$$sat(\lambda) \text{ is monotonically increasing with respect to } \lambda$$

$$sat(\lambda) \text{ is monotonically increasing with respect to } \lambda$$

$$g$$

Theorem 1. Under Assumption 1, the control command governed is stable in the sense of $L_2[0,T_0]$ norm.

Assumption 1. $\dot{\xi}_{j-1}(\tau)$ and $\dot{\xi}_{j}(\tau)$ have the same signs for $\forall \tau \in [0, T_0]$.

Proof.

$$E_{j}(\tau) = \frac{1}{2} \xi_{j}^{2}(\tau) \dot{\theta}_{j}^{2}(\tau) + \frac{1}{2} \dot{\xi}_{j}^{2}(\tau) - \frac{3}{2} \xi_{j}^{2}(\tau) \cos^{2} \theta_{j}(\tau)$$

$$U_{1,j}(\xi_{j}(\tau)) = \int_{0}^{\xi_{j}(\tau)} 3\delta d\delta$$

$$U_{2,j}(\overline{\xi}_{j}(\tau)) = \int_{0}^{\overline{\xi}_{j}(\tau) + \zeta \overline{\xi}_{j-1}(\tau)} \{\overline{\psi}(\xi_{d} + \delta) - sat(\overline{\psi}(\xi_{d}) - k_{p}\delta)\} d\delta$$

$$V_{j}(\tau) = E_{j}(\tau) + U_{1,j}(\tau) + U_{2,j}(\tau)$$

 $\dot{\xi}_j(\tau)g_{1,j} \leq 0$

10

$$\begin{split} \dot{V}_{j}(\tau) &= \dot{E}_{j}(\tau) + \dot{U}_{1,j}(\xi_{j}(\tau)) + \dot{U}_{2,j}(\overline{\xi}_{j}(\tau)) \\ &= \dot{\xi}_{j}(\tau)(\tilde{u}_{j}(\tau) - \frac{u_{\max}}{2} + \tilde{d}) + 3\dot{\xi}_{j}(\tau)\xi_{j}(\tau) + \dots \\ &\dot{\xi}_{j}(\tau)(\overline{\psi}(\overline{\xi}_{j}(\tau) + \zeta\overline{\xi}_{j-1}(\tau)) - sat(\overline{\psi}(\xi_{d}) - k_{p}(\overline{\xi}_{j}(\tau) + \zeta\overline{\xi}_{j-1}(\tau)))) \\ &= \dot{\xi}_{j}(\tau)(g_{1,j} + \tilde{d} - 3\zeta\overline{\xi}_{j-1}(\tau)) \end{split}$$
Assumption 1. There is no tether rebound in each iteration.

When $\tilde{d} - 3\zeta \overline{\xi}_{j-1}(\tau)$ has the opposite sign of $\dot{\xi}_j(\tau)$, we can obtain $\dot{V}_j(\tau) \le 0$.

Theorem 2. For tethered satellite system studied in this paper, by using the ILC-based tension control law (9), $\overline{\xi}_j$ will converges to 0 along the iteration axis.

12

Assumption 2. In each iteration, the initial conditions $x_{0,j} = (\xi_{0,j}, \theta_{0,j}, \dot{\xi}_{0,j}, \dot{\theta}_{0,j})^T$ have the same value. *Proof. Step 1). Address the non-increasing property of the energy function along the iteration axis.*

 $\Delta E_{j}(T_{0}) \triangleq E_{j}(T_{0}) - E_{j-1}(T_{0}) \qquad \text{Note:} \quad E_{j}(T_{0}) = V_{j}(T_{0}) - U_{1,j}(T_{0}) - U_{2,j}(T_{0})$ $\blacksquare \qquad \text{According to Assumption 2}$ $\textcircled{1} \Rightarrow \Delta E_{j}(T_{0}) = \int_{0}^{T_{0}} \dot{V}_{j}(\tau) d\tau - \int_{0}^{T_{0}} \dot{U}_{j}(\tau) d\tau$ $= \int_{0}^{T_{0}} \dot{\xi}_{j}(\tau) (g_{1,j} + g_{2,j}) d\tau - \int_{0}^{\xi_{d}(T_{0})} 3\delta d\delta - \int_{\xi_{d}(T_{0})}^{\xi_{j}(T_{0})} \{3\delta + \overline{\psi}(\delta) - sat[\overline{\psi}(\xi_{d}) - k_{p}(\delta - \xi_{d})]\} d\delta$ $\leq -\int_{\xi_{d}(T_{0})}^{\xi_{j}(T_{0})} \{\frac{u_{\max}}{2} - sat[\overline{\psi}(\xi_{d}) - k_{p}(\delta - \xi_{d})]\} d\delta$ $\textcircled{V}_{j}(\tau) \leq 0, \quad \frac{u_{\max}}{2} - sat[\overline{\psi}(\xi_{d}) - k_{p}(\delta - \xi_{d})] \geq 0$ $\textcircled{2} \Rightarrow \Delta E_{j}(T_{0}) \leq -\int_{\xi_{d}(T_{0})}^{\xi_{j}(T_{0})} \{\frac{u_{\max}}{2} - sat[\overline{\psi}(\xi_{d}) - k_{p}(\delta - \xi_{d})]\} d\delta \leq 0$ The energy function $E_{j}(T_{0})$ is non-increasing along the iteration axis.

Step 2). Prove the uniform convergence of $\overline{\xi}_i$.

 $\dot{E}_0(\tau)$ has the opposite sign of $\dot{\xi}_0$.

 ξ_0 is first increasing and then decreasing in the sense of $L_2[0,T_0]$ norm. Correspondingly, $E_0(\tau)$ is first

decreasing and then increasing.

 $E_0(T_0)$ is also lower bounded because $\xi_j(\tau), \dot{\xi}_j(\tau), \theta_j(\tau)$ and $\dot{\theta}_j(\tau)$ are bounded in the sense of $L_2[0, T_0]$ norm.

1/3

According to Assumption 1
(1)
$$\Rightarrow E_j(T_0) = E_0(T_0) + \sum_{i=1}^j \Delta E_i(T_0) \le E_0(T_0) - \sum_{i=1}^j \int_{\xi_d(T_0)}^{\xi_i(T_0)} \{\frac{u_{\max}}{2} - \sigma[\overline{\psi}(\xi_d) - k_p(\delta - \xi_d)]\} d\delta$$

(2) $\Rightarrow \lim_{j \to \infty} \sum_{i=1}^j \int_{\xi_d(T_0)}^{\xi_i(T_0)} \{\frac{u_{\max}}{2} - \sigma[\overline{\psi}(\xi_d) - k_p(\delta - \xi_d)]\} d\delta = 0$
 $\overline{\xi_j}(T_0)$ will converge to zero in the sense of $L_2[0, T_0]$ norm.

2 System description

3 Controller design

4 Numerical Simulation

5 Conclusion

Nanjing University of Aeronautics and Astronautics Tis2024

14

4. Numerical simulation

Simulation parameters of TSS

Parameters	Values
The dimensionless time domain of deployment phase	$\tau \in [0, 3 \text{ orbits})$
The dimensionless time domain of retrieval phase	$\tau \in [3 \text{ orbits}, 6 \text{ orbits}]$
Learning gain	$\zeta=0.08$
Initial condition of the case	$\boldsymbol{x}_{0,j} = (0.1, 0, 0, 0)^T$
Parameters of saturation function	M = 5, L = 4.99
Velocity gain	<i>k</i> _v = 4
Length gain	$k_p = 3$

4. Numerical simulation

4. Numerical simulation

2 System description

3 Controller design

4 Numerical Simulation

5 Conclusion

Nanjing University of Aeronautics and Astronautics Tis2024

18

5. Conclusions

- 1) The ILC-based tension control law is proposed for the multiple deployment and retrieval of TSS with input saturation.
- Stability of the controller is validated using Lyapunov function and LaSalle's invariance principle. The learning convergence of the closed-loop system is proved based on the system's energy function.

19

3) The control scheme can enhance the controller's performance during repetitive missions.

——7th International Conference on Tethers in Space——

Thanks!