

A Review of Electrodynamic Tether Missions from a Dimensionless Analysis Perspective and to Promote the Opening and Support of Markets in the Space Sector

G. Sánchez-Arriaga, E. C. Lorenzini, S. Bilén

Project 101058166 funded by the European Innovation Council

Review of missions with conductive tethers

About this work

- The information in this work was obtained from about 80 papers on tether missions
- The analysis was restricted to missions with conductive tethers
- Authors thank J. Carroll, Y. Ohkawa, M Nohmi, S. Kawamoto, and P. Janhunen for providing key information about some of the missions

Payload configuration of TPE-3 (Charge 1) from S. Sasaki et al., *J. of Spacecraft*, 24(5), 1987

Mission	Orbit	Radius	Length	Conductive	Cathode
(Year)	(km)	(mm)	(km)	Tether	
TPE-1	Suborbital	0.33	0.4	Stainless	Electron
(1980)	328			steel	gun
TPE-2	Suborbital	0.33	0.5	Stainless	Electron
(1981)	322			steel	gun
Charge-1	Suborbital	0.33	0.5	Stainless	Electron
(1983)	218			steel	gun
MAIMIK	Suborbital	0.25	0.4	Stainless	Electron
(1985)	381			steel	gun
Charge 2	Suborbital	0.33	0.5	Stainless	Electron
(1985)	262			steel	gun
Echo-7	Suborbital		0.06		Electron
(1988)	292				gun
OEDIPUS-A	Suborbital	1	1.2	Tin–	None
(1989)	512			Copper	
Charge 2B	Suborbital		0.5		Electron
(1992)	270				gun
TSS-1	$i = 28^{\circ}$	1.27	20	Cu	Electron
(1992)	300×300				gun
PMG	$i = 26^{\circ}$	0.79	0.5	Cu	Hollow
(1993)	874×193				$\operatorname{cathode}$
Oedipus C	Suborbital	0.3	1.2	Tin-	None
(1995)	824			Copper	
TSS-1R	$i = 28.5^{\circ}$	1.27	20	Copper	Electron
(1996)	300×300				gun

Missions in the 20th century

- All missions, except TSS-1, TSS-1R, and PMG, were suborbital flights
- Only TSS-1, TSS-1R, and PMG were designed to achieve good anodic and cathodic contacts
- All missions used insulated and round tethers
- Only PMG used a hollow cathode
- Key outcomes:
 - EDT operation in the *generator* and *thrust* modes
 - Dynamics of tethered satellites (vertical and spinning)
 - Spacecraft charging
 - Plasma wave excitation and propagation
 - Properties of the auroral ionospheric plasma
 - Determination of magenotosphere geometry
 - Measurement of electric fields

20th CENTURY

	INSULATED TETHER	BARE TETHER
HOLLOW CATHODE	PMG	
EXPELLANT-LESS CATHODE (FPEG, FEC)	CHARGE-1 TPE-1 TPE-2 MAIMIK CHARGE-2 TSS-1 TSS-1R CHARGE-2B ECHO-7	
NO CATHODE	OEDIPUS-A OEDIPUS-C	

Name	Orbit	Cross-Section	Length	Tether	Cathode
(Year)	(km)	(mm)	(km)	Material	
ProSEDS	$i = 36^{\circ}$	Circular	15	Al +	Hollow
(Canceled)	275×275	0.6		C-COR	cathode
T-REX	Suborbital	Tape	0.3	Al	Hollow
(2010)	307	25×0.05			cathode
ESTCube-1	Orbital	Multiline	0.015	Al	Electron
(2013)	665	0.0125 - 0.025			gun
STARS-2	$i = 65^{\circ}$	Multiline	0.3	Stainless	Electron
(2014)	380×380			steel + Al	gun
KITE	$i = 52^{\circ}$	Multiline	0.72	Stainless	FEC
(2016)	370×370			steel + Al	
Aalto-1	$i = 97^{\circ}$	Multiline	0.1	Al	Electron
(2017)	497×517	0.0125 - 0.025			gun
NPSAT	$i = 24^{\circ}$	Tape	0.07	Metalized films	None
(2019)	720×720	$150 \times ?$		+ aramid fibers	
PROX-1	$i = 24^{\circ}$	Tape	0.07	Metalized films	None
(2019)	705×725	$150 \times ?$		+ aramid fibers	
TEPCE	$i=28,5^{\circ}$	Braided	1.03	Ni-Cu	Electron
(2019)	$297\!\times\!848$	1.6×0.25			gun
DESCENT	$i = 52^{\circ}$	Tape	0.1	Polymer +	FEC
(2020)	$411\!\times\!420$	5×0.035		Al coating	
Dragracer	$i = 52^{\circ}$	Tape	0.07	Metalized films	None
(2020)	400×400	$150 \times ?$		+ aramid fibers	
MiTEE-1	$i = 51.5^{\circ}$	Circular	0.001		Electron
(2021)	500×500	Boom			gun
AuroraSat-1	Orbital	Multiline	0.5	Al	Electron
(2022)	500×550	0.025			gun
Foresail-1	$i = 97.5^{\circ}$	Multiline	0.06	Al	None
(2022)	530×530	0.05			
ESTCube-2	Orbital	Multiline	0.05	Al	Electron
(2023)	564	0.025			gun
E.T.PACK	$i = 50^{\circ}$	Tape	0.5	Al	Hollow
(Planned)	600×600	25×0.04			cathode

Missions in the 21th century

- ProSEDS had a high performance EDT (bare tether + HC) but was cancelled
- After ProSEDs, later missions were based on miniaturized hardware
- There is a variety of cross-sections: round, tape, multi-line
- All tethers were bare except the one of MiTEE-1
- A variety of cathodic contactors (HC, thermionic emitter and FEC) was used
- Missions can be organized into three categories:
 - **EDT missions**: ProSEDS, T-REX, STARS-2, KITE, TEPCE, DESCENT, MITEE, E.T.PACK
 - Electrostatic tether missions: ESTCube-1, Aalto-1, AuroraSat-1, Foresail-1, ESTCube-2
 - Terminator Tape[™]: NPSAT, PROX-1, Dragracer

CYLINDRICAL T TAPE TETHER MULTI-LINE TE	TETHER CANCELLED	20th CENTURY 21th CENTURY	
	INSULATED TETHER	BARE TETHER	
HOLLOW CATHODE	PMG	ProSEDS T-REX E.T.PACK	
EXPELLANT-LESS CATHODE (FPEG, FEC)	CHARGE-1 TPE-1 TPE-2 MAIMIK CHARGE-2 TSS-1 TSS-1R CHARGE-2B ECHO-7 MiTee-1	TEPCE DESCENT AuroraSat-1 STARS-2 KITE ESTCube-1 Aalto-1 ESTCube-2	
NO CATHODE	OEDIPUS-A OEDIPUS-C	NPSATForesail-1PROX-1DRAGRACER	

Number of missions and tether length

- The twelve missions in the 20th century flew more than 45 km of tether
- However, less than 4 km were flown in the 14 missions flown in the 21th century
- The cancellation of ProSEDS severely impacted tethers
 development
- The lack of funding and big projects delayed the inorbit demonstration of the high-performance EDT (bare tether+HC)

Dimensionless number of missions using conductive tethers

Parameter	ProSEDS	PROX-1	TEPCE	E.T.PACK
$L_{\rm b}~({\rm m})$	5000	70	1030	450
L_{i} (m)	10000	0	0	50
$A_{\rm c} \ ({\rm mm^2})$	0.53	3	0.02	1
$p_{\rm b} \ ({\rm mm})$	3.8	300	1.4	50
$\sigma_{\rm t}~(\times 10^7/\Omega{\rm m})$	3.54	3.54	3	3.54
$R_{\rm eq} \ ({\rm mm})$	0.6	37.5	0.4	6.3
L_* (m)	2100	360	425	570
$I_{\rm av} \ ({\rm mA})$	1400	2.4	10	500
$A (\mathrm{m}^2)$	23.7	6.7	0.45	8
$ W_{\rm L} $ (W)	1060	0.025	1.54	33.7
$ W_{\rm A} $ (W)	32.11	9.06	0.61	10.8
$m_{ m P}$	20.4	63	1.64	13
$m_{\mathbf{C}}$	994	1.0	1.64	9.7
$m_{ m t}$	12	0.5	0.42	1.3
f_e	0.6	0.36	0.6	0.6

- Four representative missions were selected: ProSEDS, PROX-1, TEPCE, and E.T.PACK
- To compare them, we used the parameters in the table and $E_{\rm m} = 150$ V/km, $N_0 = 5 \cdot 10^{11} \, 1/{\rm m}^3$, $\rho_{\rm a} = 3 \cdot 10^{-12} \, {\rm kg/m}^3$.
- Since some key characteristics were not available for some of these missions, we estimated them
- Such estimation does not affect the main conclusions of this work

Dimensionless number of missions using conductive tethers

Parameter	ProSEDS	PROX-1	TEPCE	E.T.PACK
$eE_{\rm m}L_{\rm b}/k_{\rm B}T_{\rm e}$	6250	87.5	1287	563
$R_{ m eq}/R_{ m max}$	0.2	13	0.14	2.14
$L_{\rm b}/L_{*}$	2.4	0.2	2.4	0.8
$W_{\rm L}/W_{\rm A}$	33	0.0028	2.54	3.12
$h_{\rm CoM}/L$	0.97	0.98	0.5	0.4
$L_{\rm i}/L_b$	2	0	0	0.11
ϵ_{D}	0.041	0.025	0.02	0.32

- R_{eq}/R_{max} : equivalent-to-maximum OML radius ratio
- L_b/L_* : bare-to-tether characteristic length ratio
- W_L/W_A : Lorentz-to-aerodynamic power ratio
- h_{COM}/L : center of mass distance-to tether length ratio
- L_i/L_b : inert-to-bare tether length ratio
- ϵ_D : Lorentz-to-gravity gradient torque ratio

- All missions satisfy the high bias condition
- ProSEDS and TEPCE satisfy OML condition
- E.T.PACK does not collect electrons under OML conditions (but almost)
- PROX-1 current collection is expected to be about 50% of that predicted by OML
- Ohmic effects are small in PROX-1 and E.T.PACK
- PROX-1 mainly acts as a drag augmentation devices, with the aerodynamic drag clearly dominating the electrodynamic drag
- To mitigate the dynamic instability, the E.T.PACK mission: (i) has an inert segment, (ii) limits the current, (iii) has an in-line damper

Opening new markets and opportunities

- DEORBITING
 - The post-mission disposal time of 5 years (FCC and ESA) already opened a market for deorbit devices because objects above around 500 km need propulsion to satisfy the regulation
 - Besides helping to satisfy the law, tethers can add value:
 - Collecting scientific data while deorbiting
 - Reducing the insurance cost (taking advantage of its capability to produce drag & thrust)
 - Harvest power while deorbiting
- DRAG COMPENSATION
 - EDTs can be an enabler for missions at very low LEO; however, power is needed to produce thrust
 - The bare-photovoltaic tether* (BPT) combines power + propellant-less force in a single device
 - The E.T.COMPACT project (EIC Pathfinder) will carry out R+D activities on the BPT

* Tajmar and Sanchez-Arriaga, A bare-photovoltaic tether for consumable-less and autonomous space propulsion and power generation, *Acta Astronautica*, 2021.

Opening new markets and opportunities

- IN-ORBIT SERVICING
 - According to Euroconsult, IoS will generate a market of about \$4.4 billion by 2031 on life extension, active debris removal, etc.
 - As explained in previous works (see for instance EDDE, Levin's book, etc.), EDTs can be a key technology for
 - Reaching high-efficient orbital mobility to IoS vehicles, which could use an EDT for deorbiting and reboosting without propellant
 - Preparing compact deorbit devices that could be installed in the customer for active debris removal scenarios
- EMBODIED ENERGY REPURPOSING (see McTernan, S. G. Bilén, J. Spacecraft and Rockets, 2017)
 - Three simultaneous benefits: power generation + deorbiting + life extension
- SCIENTIFIC MISSIONS
 - In LEO (see past tether missions) and also to explore planets with magnetosphere

Conclusions

About the missions

- Past tether missions demonstrated a great variety of applications and singular features.
- However, the high performance EDT (bare tether + HC) has never been demonstrated on-orbit

Dimension-less parameter analysis

- Each tether mission involves many dimension-less parameters (in E.T.PACK we computed about 20)
- Sharing data of next EDT missions can maximize the lessons-learned and boost EDT development.

About market and opportunities

- Except power harvesting, past EDT missions already demonstrated the key capabilities of future products.
- Four simultaneous events and happening in Europe and can trigger a turning point for EDTs:
 - The European Innovation Council provided funds and stability to a team through 3 projects: E.T.PACK, E.T.PACK-F and E.T.COMPACT
 - The deorbit device of E.T.PACK, which involves a bare tether with a HC, will be flown in 2025
 - The new company PERSEI SPACE has been founded (see presentation on Wednesday)
 - The European Space Agency is promoting the Zero Debris Approach

Thank you for your attention !

More information about E.T.PACK at

www.etpack.eu

Contact: gonzalo.sanchez@uc3m.es

Project 101058166 funded by the European Innovation Council

Conclusions

About market and opportunities

- Past EDT missions already demonstrated most of the key performance/capabilities that are needed to be implmented in future products: propellant-less thrust and drag and capability to provide scientific data
- To the best of our knowledge, power was dissipated in past tether missions but none of them harvested power to be use onboard
- Four simultaneous events, which can trigger a turning point for EDTs, are happening in Europe:
 - The European Innovation Council provided funds and stability to a team through 3 projects: E.T.PACK, E.T.PACK-F and E.T.COMPACT
 - The deorbit device of E.T.PACK, which involves a bare tether with a HC, will be tested in 2025
 - The new company PERSEI SPACE has been founded (see presentation on Wednesday)
 - The European Space Agency is promoting the Zero Debris Approach